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1. Introduction

Removal of lead from paint and gasoline has substantially
reduced blood lead levels in the United States, but lead exposure
still remains a serious public health problem (White et al., 2007).
Even if blood lead levels in children are below the current
community action level (10 mg/dl), chronic lead exposure can

impair cognitive function (e.g., Counter et al., 2000; Jusko et al.,
2008; Kordas et al., 2006; Min et al., 2007; Needham et al., 2005;
Stewart et al., 2006; Surkan et al., 2007; White et al., 2007) and
increase the likelihood of delinquency (Dietrich et al., 2001).

Chronic lead exposure has developmental and behavioral
effects in both vertebrate and invertebrate animals. Among its
effects are changes in motor activity levels in rhesus monkeys
(Lasky and Laughlin, 2001), rats (Tang et al., 1994) and Drosophila

(Hirsch et al., 2003) and impairments in learning and memory in
tadpoles (Strickler-Shaw and Taylor, 1991), mice (Sun et al., 2005)
and rats (Alber and Strupp, 1996; Garavan et al., 2000; Jett et al.,
1997; Moreira et al., 2001; Morgan et al., 2000). Despite
considerable progress in understanding the physiological mechan-
isms of how lead affects neuronal plasticity during development
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A B S T R A C T

The genetics of gene expression in recombinant inbred lines (RILs) can be mapped as expression

quantitative trait loci (eQTLs). So-called ‘‘genetical genomics’’ studies have identified locally acting

eQTLs (cis-eQTLs) for genes that show differences in steady-state RNA levels. These studies have also

identified distantly acting master-modulatory trans-eQTLs that regulate tens or hundreds of transcripts

(hotspots or transbands). We expand on these studies by performing genetical genomics experiments in

two environments in order to identify trans-eQTL that might be regulated by developmental exposure to

the neurotoxin lead. Flies from each of 75 RIL were raised from eggs to adults on either control food

(made with 250 mM sodium acetate), or lead-treated food (made with 250 mM lead acetate, PbAc). RNA

expression analyses of whole adult male flies (5–10 days old) were performed with Affymetrix DrosII

whole genome arrays (18,952 probesets). Among the 1389 genes with cis-eQTL, there were 405 genes

unique to control flies and 544 genes unique to lead-treated ones (440 genes had the same cis-eQTLs in

both samples). There are 2396 geneswith trans-eQTLwhichmapped to 12major transbandswith greater

than 95 genes. Permutation analyses of the strain labels but not the expression data suggests that the

total number of eQTL and the number of transbands are more important criteria for validation than the

size of the transband. Two transbands, one located on the 2nd chromosome and one on the 3rd

chromosome, co-regulate 33 lead-induced genes, many of which are involved in neurodevelopmental

processes. For these 33 genes, rather than allelic variation at one locus exerting differential effects in two

environments, we found that variation at two different loci are required for optimal effects on lead-

induced expression.

� 2009 Elsevier Inc. All rights reserved.
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(Chang et al., 2008; Marchetti, 2003; Toscano and Guilarte, 2005)
and in the adult (Gilbert et al., 2005; Schneider and Decamp, 2007;
Verina et al., 2007; White et al., 2007), the genetic mechanisms
lead disturbs are not well understood.

We thus decided to develop Drosophila melanogaster as a model
for study of the behavioral, physiological and genetic effects of
chronic lead exposure during development.Drosophila take up lead
from the nutrient medium they are reared on (Cohn et al., 1992)
and the dose response curve for the lead body burden has a
significant linear component (Hirsch et al., 2003). As is the case for
vertebrates, lead is toxic in Drosophila (larval LC50 (�standard
error): 6.60 � 0.64 mM PbAc added to medium) and delays pre-adult
development (lowest concentration extending larval development,
1.2 mM PbAc) without changing adult body weight (Akins et al.,
1992). Lead-dependent behavioral changes have been harder to
demonstrate in Drosophila. An early study reported that, even at a
high dose (3.07 mM PbAc), phototaxis, locomotion and learning are
unaffected (Akins et al., 1992). In sharp contrast, at very much lower
doses courtship behavior (which is influenced by experience during
the first few days of adult life; Barth et al., 1997b; Hirsch et al., 1995;
Hirsch and Ghiradella, 2004) shows biphasic lead-dependent
changes: facilitation at low (10 and 40 mMPbAc) doses and inhibition
at higher (100 and 250 mM PbAc) ones (Hirsch et al., 2003).
Locomotor activity is also affected, but only at higher (250 mM PbAc)
doses, and then only for males (Hirsch et al., 2003). Furthermore, as is
the case for mammals (Chen et al., 2007; Cooper and Manalis, 1983;
Cooper et al., 1984; Kiraly and Jones, 1982;Ming and Song, 2005; Petit
and LeBoutillier, 1979; Toscano and Guilarte, 2005; White et al.,
2007), lead affects synaptic development in Drosophila (100 mM
PbAc; Morley et al., 2003). Recent evidence suggests that these
synaptic effects may involve lead-dependent changes in calcium
regulation (He et al., 2009). Finally, QTL analysis using the
recombinant inbred lines (RILs) identified a site for lead-dependent
changes in locomotor activity (Hirsch et al., 2009).

Toxicogenomic or pharmacogenomic studies generally involve
administering various doses of a toxin or drug to an organism or
cell line, and then measuring changes in expression of all or nearly
all genes using microarrays at either a single end point or as a time
series (reviewed in Foster et al., 2007). If two compounds produce
similar patterns of changed gene expression, they are said to have
similar ‘‘fingerprints’’ suggesting that they function in a similar
manner, for instance in a cell line (Coe et al., 2007) or in yeast
(Perlstein et al., 2007). As the cost of whole genome microarrays
and other technologies to measure global gene expression levels
has dropped, use of these approaches has become widespread.
However, because they often identify toxin-dependent changes in
expression for hundreds or even thousands of genes, it is difficult if
not impossible to take the next step and validate all the results
through follow-up genetic or molecular studies.

What is needed is an approach that reduces to a more
manageable level the number of candidate toxin-regulated genes.
Fortunately a new multi-dimensional strategy, ‘‘genetical geno-
mics,’’ has recently been developed to identify master-modulatory
loci that regulate the expression of dozens or hundreds of other
genes (Broman, 2005; de Koning and Haley, 2005; Jansen and Nap,
2001; Li and Burmeister, 2005; Rockman and Kruglyak, 2006).
Genetical genomics combines two methodologies: microarray-
based whole transcriptome analyses and extracting quantitative
trait loci (QTLs) using recombinant inbred lines (RILs) (seeWebQTL
at http://www.genenetwork.org for several examples of eQTL
studies). Global gene expression levels are determined for each
recombinant inbred line, and then QTL software (e.g., R/QTL,
Broman et al., 2003) is used to look for statistical association
between specific chromosomal loci and transcript levels for all the
genes.With this approach regulation ofmany genes in an organism
is linked by the QTL analysis to specific chromosomal loci, termed

expression QTLs (eQTLs). The eQTLs affecting a gene’s steady-state
mRNA levels can either be closely linked (cis-eQTLs) or unlinked,
even on a different chromosome (trans-eQTLs) (Broman, 2005).

Drosophila has a number of features that are desirable in
genetical genomic studies using multicellular organisms. First, the
Drosophila genome (�125 Mbp; �662 cM) is about one tenth the
size of the rat or mouse genome, which would simplify re-
sequencing large numbers of strains to identify quantitative trait
nucleotides, and there is a wide array of genetic tools that allow
one to quickly map and knock out the genes identified as eQTL
peaks in flies (Page and Ruden, 2005). Also Drosophila recombinant
inbred lines (RILs) are available that were made by mapping roo
transposons in recombinants of two highly divergent parental
strains, Oregon R (ORE) and Russian 2b (2B) (Nuzhdin et al., 1993).
While the C. elegans genome is even smaller, in C. elegans organs are
often present as multi-nucleated syncytia. In addition, they lack
some epithelial properties and signaling pathways found in
Drosophila and vertebrates, including humans (Chisholm and
Hardin, 2005; Podbilewicz, 2006). Also, the entire C. elegans

nervous system consists of just 302 identifiable neurons with all
neuronal connections known (e.g., Ye et al., 2008). Drosophila, on
the other hand, shares important features with mammals
including epithelial properties and a central nervous system that
more closely resembles those of mammals. For example, the
Drosophila brain consists of �500,000 neurons (Bate and Martinez
Arias, 1993) whose synaptic connections involve proteins that are
highly conserved with those found in vertebrates (Koh et al., 2000)
and, as in humans, the developing nervous system is affected by
early experience (Barth et al., 1997a; Urbach and Technau, 2003).

We found that by using the new genetical toxicogenomic
approach we could identify candidate regulatory loci underlying
lead toxicity. Surprisingly, we identified a small number of trans-
eQTLs, each of which apparently influences the expression of a
large number of other genes in a lead-dependent manner. The
eventual identification of lead-dependent master-modulatory
genes will be profoundly important in deepening our under-
standing of the developmental and physiological consequences of
lead exposure.

2. Results

2.1. Lead alters the regulation of cis-eQTLs and trans-eQTLs

We performed gene expression analyses of 18,952 probesets
(using Affymetrix Dros2 gene expression arrays) in adult male
Drosophila from 75 recombinant inbred lines (RILs) that were
mapped with 82 polymorphic markers between the two parental
strains, Oregon R (ORE) and Russian 2B (2B). The 18,952 probesets
correspond to�14,000 genes that have been validated in the latest
genome browser and �5000 candidate regions that have not been
validated as expressed genes. To avoid confusion, unless we are
discussing a specific gene or genes, we will refer to the expression
of probesets rather than genes because not all probesets
correspond to validated genes. Expression analyses were per-
formed from each RIL in the presence or absence of developmental
and adult exposure to 250mM lead acetate (see Section 4;
Supplementary Table S1 has the expression data for all for all
18,952 probesets for all 150 conditions).

We identified a total of 1389 different probesets with cis-eQTL
(i.e., within a 5 cM sliding window). There are 405 cis-eQTL in
control flies only, 544 in treated flies only, and 440 in both
conditions (Table 1 and Fig. 1a; Supplementary Table S2 has the
complete cis-eQTL gene lists and data). The criteria for significant
cis-eQTL are that the permutation LOD scores have a P-value of less
than 0.0001 (this is the nominal P-value of the LOD threshold based
on 1000 permutations of the strain labels), which corresponds to a
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false discovery rate (FDR) of about 4% using the Benjamini-
Hochberg method. Permutation LOD scores are calculated for each
of the 18,952 probesets independently. The strain labels for the
microarray data are permuted 1000 times and LOD scores are
calculated for each marker interval for each probeset. Some QTL
studies use a LOD cutoff of 3–3.5 to indicate a ‘‘significant’’ QTL
peak, but the permutationmethod for calculating the LOD scores is
more robust because it depends on the P-values which are
calculated for each probeset independently. Consequently, for one
probeset, a LOD score of 2.8 at one interval could have a P-value of
less than 0.0001, whereas for a second probeset a LOD score of 3.8
at some other interval is needed to reach this threshold. The idea
behind permutation LOD score methodology is that the 40 highest
LOD scores (out of 1000 permutations) for a QTL at a particular
interval represents the critical value that provides an FDR = 0.04
(4%), which is a measure of the experiment-wide type I errors (i.e.,
false positives). In other words, if there is a real relationship
between a marker and a QTL, such as an eQTL, then only 4% of the
permutations will have a higher LOD score at a particular interval
than the experimental data. Permutation analyses have to be
conducted to determine the LOD scores with this method because,
since each probeset has a different result after 1000 permutations,

there is no mathematical method to determine permutation LOD
scores directly for each probeset.

To further improve the data, we also eliminated potential ‘‘false
eQTLs’’ that might be caused by single nucleotide polymorphisms
at Affymetrix probe sites (Fig. 1c; Supplementary Table S2). Our
method removes false eQTLs in genes that have one ormore outlier
probes in a probeset, presumably because the outliers correspond
to probes that contain a SNP (as described in Section 4.10). As
expected, a much larger percentage of the cis-eQTLs are false by
this criteria compared with trans-eQTLs (Fig. 1c). Since the
Affymetrix DrosII gene array that we used includes 18,952
probesets, the 1389 cis-eQTL represent �7% of the probesets.

We identified a total of 2396 probesets with trans-eQTLs (�13%
of the probesets), 948 in control flies only, 1191 in lead-treated
flies only, and 357 in both control and lead-treated flies (Fig. 1b;
Table 1). As with cis-eQTLs, the criteria for significant trans-eQTLs
are P-values of <0.0001 which corresponds to a FDR of about 4%
(see Supplementary Table S3 for complete trans-eQTL probeset
lists and data). This is consistent with published studies in other
organisms. The mean heritability for steady-state mRNA levels is
38.7% without treatment effects, and heritability increased to
40.6% when treatment effects are considered (Fig. 2a and b).
Heritability is the proportion of phenotypic variation (in our case,
steady-state mRNA levels) in a population that is attributable to
genetic variation among individuals, and ‘‘mean heritability’’ is the
average heritability for all of the probesets. Heritability was
calculated as described in Section 4.8. When all of the cis- and
trans-eQTLs were analyzed, there are more eQTL with ‘‘significant’’
P-values (P < 0.05) than expected at random (Fig. 2c). A random
event would have equal frequencies across the P-value range (i.e.,
the bars would all be the same height), or possibly a dip in the
number of P-values in the significant range (P < 0.05).

2.2. Trans-eQTLs identify transbands (hotspots) for lead-induced

changes in gene expression

Our genetical toxicogenomic study identified 12 significant
trans-eQTL ‘‘transbands’’ (5 in control samples and 7 in treated
samples) at 11 different loci (the transband at 4_146 cM (73D) is
located in both samples), each containing between 96 and 278
probesets (Table 1). A ‘‘transband’’ or ‘‘hotspot’’ is a group of trans-
eQTLs that lie in a nearly vertical line (i.e., within a 5 cMwindow) in
a ‘‘cis-trans-plot’’ that plots eQTL location on the x-axis and gene
location on the y-axis (Fig. 3a). The nearly diagonal line
corresponds to cis-eQTLs because these eQTLs coincide (i.e., within
a 5 cM window) with the gene locations. Transbands are often
interpreted as being a group of genes that are co-regulated by a

Table 1
Number of genes and GO categories in control and lead-treated trans-eQTL transbands. The 5 control (con) and 7 lead-treated (trt) trans-eQTL transbands and their

approximate cytological locations are indicated in the first column. The second column shows the location of a transband by linkage group and centimorgans (cM) (1=X

chromosome (bands 1–20), 2=2L and part of 2R (bands 21–60), 3 =distal 2R (bands 61–80), and 4 (chromosome 3 (bands 81–100). GO, is themost significant gene ontological

(GO) category for the genes in the transband. The false discovery rate (FDR) is shown in parentheses. # permutations with this GO category, is the number of permutations

(out of 200) that have a transband with significant GO (FDR�0.01).

Transbands cM Number of genes GO (FDR) # permutations with this GO category

con_27B 2_46 117 Cell Cycle (0.01) 0/200

con_50DF 2_161 152 Alternative splicing (4.41E�06) 19/200

con_70C 4_136 103 None

con_72A 4_141 134 Hydrolase (3.87E�04) 17/200

con_73D 4_146 278 Hydrolase (1.43E�26) 17/200

trt_3E 1_11 245 Developmental Protein (5.68E�03) 15/200

trt_30AB 2_71 194 Actin Binding (4.80E�04) 0/200

trt_57F 3_6 96 Golgi apparatus (0.01) 0/200

trt_63A 4_21 140 Mitochondrial part (0.0022) 14/200

trt_65A 4_31 98 None

trt_73D 4_146 222 Hydrolase (7.65E�12) 17/200

trt_77E 4_156 103 Carbohydrate metabolic process (3.45E�15) 2/200

Fig. 1. Control and lead-treated cis-eQTLs and trans-eQTLs. (a) Venn diagrams of

numbers of genes with cis-eQTLs and (b) trans-eQTLs in each category (con only,

con + trt only, and treated only). Detailed information is in Supplementary Tables S2

and S3. (c) Graph of the number of true (T) and false (F) cis-eQTL based on outlier

analyses of the 14 probes in each of the 18,952 probesets. Notice that cis-eQTL have

a higher percentage of false eQTL than do trans-eQTL.
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master-modulatory gene that is encoded at the genomic location of
the transband. The concept is that a DNA sequence polymorphism
in amaster-modulatory gene (e.g., a deleterious SNP that decreases
the activity of a transcriptional activator, such as by a missense
mutation in the activating domain or a promoter mutation that
decreases the expression of the master-modulatory gene) would
cause all of the genes in a transband to be coordinately expressed
at a low level when the master-modulatory protein has one
genotype (i.e., it has the ‘bad’ SNP), but coordinately expressed at a
high level when the master-modulatory protein has the other
genotype (i.e., it has the ‘good’ SNP).

The size of the transbands was determined based on the
number of probesets with significant trans-eQTL linkage in a 5 cM
window in the experimental data. To find the minimum size of a
transband, we determined that 96 probesets in a 5 cM window
corresponds to P < 0.05, chi-square test, so this was used as the
minimum size. As shown in a ‘‘cis-trans-plot’’ of the eQTL data,
untreated males have significant control trans-eQTL transbands at
chromosomal regions 27B, 50DF, 70C, 72A and 73D (Fig. 3a (red);
Supplementary Table S3). In contrast, males reared in lead-treated
food have significant trans-eQTL transbands at chromosomal
regions 3E, 30AB, 57F, 63A, 65A, 73D and 77E (Fig. 3a (black);
Supplementary Table S3). This result suggests that the trans-
regulation of most probesets in the trans-eQTL transbands (with
the possible exception of 73D) differ between control and lead-
treated flies. As is standard in Drosophila, unless otherwise
indicated, we will refer to the transbands by their approximate
cytological location rather than by cM linkage (e.g., 4_146, where 4
is the linkage group and 146 is in cM, corresponds roughly to 73D).
As a technical note, chromosome 2 is split into two linkage groups
(2 and 3) because of unlinked roo elements on the right arm of
chromosome 2. The other chromosomes (X, 3, and 4) are single
linkage groups.

A possible explanation for the different genetic locations of
most of the transbands in the two environments is that the
transbands are correlation artifacts amongst co-expressed genes
and are therefore false transbands (Breitling et al., 2008). In silico

simulation studies have shown that false trans-eQTLs often cluster
randomly to a small number of transbands because of artifacts in
the architecture of the RILs (Perez-Enciso, 2004). In order to
determine whether the transbands in Table 1 are true or false, we
did 100 permutations of the strain labels of the 75 RILs of the data
from the control-exposed flies (Fig. 4a and b) and another 100
permutations with the data from the lead-treated flies (Supple-
mentary Fig. 4C, D and Table S4) (Breitling et al., 2008). For each
permutation, we analyzed: (1) the number of transbands, (2) the
number of eQTLs, (3) the number of probesets that are the same
(i.e., they match) in the control and lead-treated transbands, and
(4) the size (total number of probesets with eQTLs) in all of the
transbands. To be consistent with the experimental data,
significant in silico permutation transbands have at least 96
probesets with an eQTL in a 5 cM window (i.e., 1–4.99 cM, 5–
9.99 cM, etc.). The results are as follows:

(1) The number of transbands was significantly larger for the
experimental data (which we sometimes call real data)
compared with the in silico permutation data (which we call
‘‘permutation data’’) (P < 0.05, chi-squared test). Only 6 of the
200 permutations have greater than 4 transbands (3%),
whereas there are 5 control transbands and 7 treated
transbands in the experimental data. The largest number of
transbands in the permutation data was 7, and this occurred
once (Fig. 4e). When the numbers of transbands in the control
and treated datasets were added, there were 12 transbands in
the real data but the largest number in the combined 200
permutations was 8 transbands (Supplementary Table S4).

Fig. 2.Heritability and P-values for eQTL data. (a) Heritability estimateswithout factoring in treatment (environment) effects. (b) Heritability estimateswith treatment effects

factored in. (c) P-values for all markers (82 markers), and every 5 cM between markers by all expression traits. As can be seen there are more ‘significant’ (P < 0.05) than

expected at random.
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(2) The number of eQTLs was significantly higher for the real data
compared with the permutation data (P < 0.05, chi-square
test). Only 2 of the 200 permutations have greater than 2780
eQTLs, whereas there are 2780 control eQTLs and 3350 treated
eQTLs in the real data. The false eQTLs were included in these
analyses (i.e., the eQTLs are for probesets that have one or more
outlier probes), but the real data and the permutation data have
the same frequency of false eQTLs, so this probably will not
affect the results. The largest two permutation transbands
contain 4040 and 2921 eQTLs (Fig. 4f). When adding the
number of eQTL in the control and treated datasets, there were
6130 eQTL in the real data, but the largest number in the
combined 200 permutations was 4658 (Supplementary Table
S4).

(3) The total number of matching probesets with eQTLs in control
and treated transbands was significantly higher in the real data
compared with the permutation data (P < 0.01, chi-square
test). There were a total of 225 matching probesets with eQTLs
in the real data transbands (control versus treated), but the
largest number of matching probesets with eQTLs in the
permutation data transbands was 58 (control permutation 1
was comparedwith treated permutation 1, etc.). In fact, only 22
of the 100 permutation datasets had greater than onematching
probeset with eQTLs in the transbands, and the total number of
matching probesets with eQTLs in the combined 200 permuta-
tions datasets was only 223 (Supplementary Table S5). We

analyzed the matching probesets with eQTLs in the real data
more carefully and we identified 9 pairs of transbands that had
3 or more matching probesets with eQTLs in the transbands
(Table 2). The largest match in the real data had 83 probesets
with eQTLs which are regulated by the same transband at
chromosome region 73D (4-146_73D) in both control and
treated samples (Table 3). The same transband regulating one or
more genes only occurred one time in the permutation
dataset—one permutation had 11 genes regulated by the same
transband in both control and lead-treated datasets (Supple-
mentary Table S5).

The number of matching probesets with eQTLs in two

different transbands (in control versus treated) was also
significantly higher in the real data compared with the
permutation data (P < 0.05, chi-square test). The largest
category of matching probesets with eQTLs in the permutation
data was in transbands that were separated by greater than
5 cM on the same chromosome or on different chromosomes.
In this category, one permutation had 49 probesets with eQTLs,
a second permutation had 26 probesets with eQTLs, and a third
permutation had 18 probesets with eQTLs in two different
transbands in the control and lead-treated permutation
datasets. All of the remaining permutations had 13 or fewer
probesets in two different transbands (Supplementary Table
S5). This is in comparison to the 33 probests with eQTLs
(corresponding to 33 genes) in the real data that were in the
30AB transband on chromosome 2 in the lead-treated dataset
and in 2 adjacent transbands (72A and 73D) on chromosome 3
in the control dataset (Table 3). These 33 ‘‘co-expressed’’ genes
will be discussed further in a later section.

(4) The size of the transbands was not significantly higher for the
real data compared with the permutation data (Fig. 4g and h).
There were over 20 transbands in the 200 permutations that
were larger than the cutoff of 96 probesets with eQTLs. There
would have to be over 800 genes with eQTLs in a transband to
be a significant excess, but the largest transband in the real data
was only 278 genes with eQTLs (Fig. 4g and h; Table 1).

The fourth conclusion, that the transband size in the real
data is not significantly higher than the permutation data, was
not unexpected because false trans-eQTLs often cluster
randomly to a small number of transbands (Perez-Enciso,
2004). Nevertheless, the significance of the first three analyses
(the total number of transbands, the total number of probesets
with eQTLs, and the total number of matching probesets with
eQTLs) suggest that our other approaches (1–3) might be valid
for identifying eQTLs, transbands, and co-regulated genes in
the experimental data (see Section 3).

2.3. Some transband probesets are polarized for expression based on

genotype and/or treatment

In the cis-eQTL analysis, we eliminated false cis-eQTL artifacts
that are caused by probe(s) in a probeset that poorly hybridize to
the sample because of SNPs or other sequence mismatches. If the
false cis-eQTLs are not eliminated, there would be an apparent
polarization of expression (steady-state mRNA levels) based on
genotype if one of the two parental strains was used to make the
expression array (Chesler et al., 2005). However in studies such as
ours where neither parental strain has been sequenced, there
should be no polarity for expression based on genotype because
there are likely an approximately equal number of SNPs in ORE and
2B compared with the reference strain (y1; cn1 bw1 sp1) (Adams
et al., 2000). Fortunately trans-eQTLs are less susceptible to this
SNP-based artifact because, by definition, there are no SNPs that
map to the probesets in a transband (Chesler et al., 2005).

Fig. 3. Results of a genetical genomics study of control and lead-treated from 75 RIL

Drosophila lines. (a) Locations of the eQTLs are represented on the x-axis and

locations of transcripts (based on their chromosomal locations) are represented on

the y-axis. eQTL locations for cis regulated genes every 5 cM are present along the

diagonal. Notice the control trans-eQTL transbands at 27B, 50DF, 70C, and 73D–72A.

Also, notice the lead-induced transbands at 3E, 30AB, 57F, 65A, and 82D–85A. The

genetic and physical maps of the lines are not perfectly aligned along the diagonal,

due to regions with greatly reduced recombination in certain regions (bands 50–57

and 75–85) in the RILs compared to traditional crosses. It is not clear why these

regions had reduced recombination. (b) Graphs of eQTL analysis of Mocs1, which is

co-regulated by trans-eQTL at 30AB and 72A, and (c) vnd, which is co-regulated by

trans-eQTL at 30AB and 73D. The LOD Score is the log of the probability distribution,

as described in Section 4. Red, eQTL of genes from control flies. Black, eQTL of genes

from lead-treated flies.
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Therefore polarization of expression with the genotype of genes in
a transband as a dependent variable (whichwe call ‘‘polarization of
expression based on genotype’’) might indicate a common
regulator for a majority of genes in a transband.

We calculated the polarity of expression based on both
genotype and environment (�Pb). In these analyses, we found that
expression of probesets with trans-eQTL overall show no polarity of
expression based on genotype (data not shown). In otherwords, of the
2396 total trans-eQTLs (see Fig. 1), the number of probesets that have
higher steady-state mRNA levels when the genotype is ORE is
approximately the same as when the genotype is 2B. However the
probesets in individual transbands often show such polarity,
suggesting that steady-state mRNA levels are regulated by genes
that are encoded at the transband loci. For example, if a transcription
activator at a transband locus is expressed at a low level in 2B but at a
high level in ORE, then there should be a polarity of expression where
ORE relative expression is higher than 2B relative expression for all of
the genes regulated by the activator in the transband.

We analyzed polarity of expression based on genotype in the 12
transbands by determining the ratio of the expression level of a
probeset with one genotype over the expression level of the same

probeset with the other genotype with the same environmental
treatment. Specifically we determined the ratio (ORE � Pb)/
(2B � Pb) and (ORE + Pb)/(2B + Pb) for all of the probesets in the
12 transbands (Table 2). In the experimental data from flies with
no lead treatment, 5 transbands are enriched in probesets that
have higher expression in ORE (con_50DF, con_72A, con_73D,
trt_30AB, and trt_73D) and 2 transbands have a significant
enrichment in probesets that have higher expression in 2B (trt_3E
and trt_65A) (P < 0.001, chi-square test; Table 2; Fig. 5c;
Supplementary Table S3). In the lead-treatment group, 5 trans-
bands have a significant enrichment in probesets that have higher
expression in ORE (con_72A, con_73D, trt_30AB, trt_57F, and
trt_73D) and 4 transbands have a significant enrichment in
probesets that have higher expression in 2B (con_27B, trt_3E,
trt_63A, and trt_65A) (P < 0.001, chi-square test; Table 2; Fig. 5d;
Supplementary Table S3). Of the 12 transbands, only two did not
show a polarity of expression based on genotype in at least one of
the two environments (con_70C and trt_77E).

Since we analyzed relative expression levels in two environ-
ments, and only 1 of the transbands was present at the same
location in both environments (con_73D and trt_73D), it seemed

Fig. 4. Permutation analysis of control and treated eQTL data. (a and c) Plot of control and treated eQTL data showing genome location (x-axis) and the number of eQTL (y-axis).

The 5 control and 7 treated eQTL transbands are indicated. (b and d) Plot of 100 control and 100 treated permutation analyses inwhich the RIL labelswere randomized. (e) Plot

of the number of transbands per permutation (x-axis) and the number of permutations with the corresponding number of transbands (y-axis). The experimental control and

treated transband numbers are indicated (arrows). (f) Plot of the rank order of permutations (x-axis) versus the number of eQTL in the transband (y-axis). The number of eQTL

in the control and treated transbands from the experimental data are indicated (arrows). (g and h) Plots of rank order of transbands (x-axis) versus the number of eQTL in the

corresponding transband (y-axis). The control and treated transbands are indicated (arrows).
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likely that some of the transbands might also be polarized for
expression based on environment. For example, if a transband
encodes a transcription activator that is induced by lead, then all of
the genes in the transband would have higher relative expression

levels in the lead-treatment group. To determine whether there is
polarity for expression of probesets in a transband based on
environment, we determined the ratios (2B + Pb)/(2B � Pb) and
(ORE + Pb)/(ORE-Pb) for all of the probesets in the 12 transbands
(Table 2). We determined that 5 transbands with the 2B genotype
are significantly enriched in probesets that are up-regulated by
lead (con_50DF, con_72A, con_73D, trt_30AB, and trt_73D) and 2
transbands are significantly enriched in probesets that are down-
regulated by lead (trt_3E and trt_57F) (P < 0.001, chi-square test;
Table 2; Fig. 5b; Supplementary Table S3).We also determined that
5 transbands with the ORE genotype are significantly enriched in
probesets that are up-regulated by lead (con_27B, con_72A,
con_73D, trt_30AB, and trt_73D) and 4 transbands are significantly
enriched in probesets that are down-regulated by lead (con_50DF,
trt_3E, trt_63A, and trt_65A) (P < 0.001, chi-square test; Table 2;
Fig. 5a; Supplementary Table S3).

We do not fully understand the reason for the polarization of
gene expression in the transbands based on the genotype and/or
the environment, but it suggests that trans-regulators with
differing sensitivities to lead might be involved in co-regulating
the genes in a transband (see Section 3). In the next section, we
analyze this further by investigating specific probesets that are co-
regulated by two different transbands in the two environments.

2.4. Co-regulation of genes by two different trans-eQTLs

As discussed in the previous section, further analysis of
probesets from the real data identified a group of 33 probesets
that are in two adjacent transbands on the 3rd chromosome in the
control dataset (19 probesets at 4_141 cM (72A) and 14 probesets
at 4_146 cM (73D)) and in a single transband at a different location

Fig. 5. The transband at 30AB is polarized for genes that are induced by lead. (a and b)More genes have an increase in relative expressionwhen the transband has either the 2B

(a) or the ORE (b) genotype in the presence of lead. This indicates that there is a significant polarity of increased expression for the probesets in the 30AB transband after lead

exposure regardless of genotype. (c and d)When the 30AB transband has theORE genotype, there is a polarization of increased expression in either the presence (a) or absence

(d) of lead. This indicates that there is a significant polarization of increased expression for the probesets in the 30AB transband when the genotype is ORE regardless of

environment. The polarization level of all of the hotspots is in Supplementary Table 3.

Table 2
Polarity of 5 control and 7 treated trans-eQTL transbands. The transband locations

are in the first row (see Table 1). Polarity is determined in four manners (first row).

For example, (B +Pb/B�Pb) is the ratio of the level of expression of a genewith the B

genotype in the presence of lead over the level of expression of the same gene in the

absence of lead. The ratio (n>1:n<1), where n>1 is the number of genes in a

transband that have a relative increase in expression and n<1 is the number of

genes in the same transband that have a relative decrease in expression.

Transband B+Pb/B�Pb

(n>1:n<1)

O+Pb/O�Pb

(n>1:n<1)

O�Pb/B�Pb

(n>1:n<1)

O+Pb/B+Pb

(n>1:n<1)

con_27B (72:45) (83:34)* (71:46) (34:83)*

con_50DF (105:47)* (38:114)* (118:34)* (85:67)

con_70C (53:50) (52:51) (57:46) (54:49)

con_72A (105:29)* (104:30)* (108:26)* (110:24)*

con_73D (170:108)* (170:108)* (178:100)* (176:102)*

trt_3E (89:156)* (61:184)* (82:163)* (60:185)*

trt_30AB (124:70)* (156:38)* (127:67)* (162:32)*

trt_57F (21:75)* (51:45) (44:52) (71:25)*

trt_63A (75:65) (32:108)* (75:65) (32:108)*

trt_65A (33:65) (17:81)* (10:88)* (11:87)*

trt_73D (128:94)* (125:97)* (136:86)* (138:84)*

trt_77E (63:40) (62:41) (63:40) (61:42)

Total (1038:844)* (951:931) (1069:813)* (994:888)*

Total, the total number of genes in all 12 transbands that either increase or decrease

expression in a column.
* P<0.001 (chi-squared test). Bold text, indicates a significant enrichment in

genes in a transband with a relative increase in expression. Italicized text, indicates

a significant enrichment in genes in a transband with a relative decrease in

expression.
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on the 2nd chromosome in the lead-treated dataset (2_71 cM
(30AB); Table 3; Supplementary Table S6). We refer to these 33
probesets as being ‘‘co-regulated’’ by two different trans-eQTLs.
The proteins encoded by the 33 probesets (i.e., 33 genes) are
involved in several potentially lead-related processes, such as
heavy metal sequestration or storage (MtnA andMocs1) (Balamur-
ugan et al., 2007; Balamurugan and Schaffner, 2006; Egli et al.,
2006a,b), nervous system development and function (tsp2a,
tsp42ec, tsp42er, CG4301, CG31720, CG5096, inx7, vnd) (Fradkin
et al., 2002; Kopczynski et al., 1996; Sinenko and Mathey-Prevot,
2004; Todres et al., 2000), detoxification (CG4562, CG10505, rtet)
(Mehta et al., 2005), and proteolysis (pcl, CG33127, kTry)
(Schubert, 2008) (Table 4).

Comparison of the microarray signal intensities of these 33
genes co-regulated by the 2nd and 3rd chromosome transbands
indicates that all 33 of them are significantly up-regulated by lead
(Fig. 6a and b; Supplementary Table S6). Interestingly there is
approximately the same (or lower) expression when the 30AB
transband has the ORE or the 2B genotype in the absence of lead

(i.e., (ORE � Pb)/(2B � Pb) � 1), but an increase in expression in
ORE versus 2B in the presence of lead (i.e., (ORE + Pb)/(2B + Pb) > 1)
(Fig. 6c and d; Supplementary Table S4). There is a similar pattern
for the 72A or 73D transbands (Fig. 6e and f; Supplementary Table
S6). Such ‘‘crossing of the lines’’ in this type of GxE plot is
suggestive of a genotype-by-environment (GxE) interaction
(Gibson, 2008). More rigorous GxE-eQTL analyses are described
in the next two paragraphs.

Log of distribution (LOD) plots of the 33 co-regulated genes
shows a significant peak at 72A-73D in the control data and two
significant peaks at 30AB and 72A–73D in the treated data (Fig. 7a
andb). To determinewhether there is a significantGxE interaction
among the33genes co-regulatedby twodifferent trans-eQTLs,we
performed analysis of variance (ANOVA) with the model:
intensity = G + E + GxE + error, where G is the genotype (ORE or
2B), E is the environment (control or lead), and ‘‘error’’ is the root
mean square error. In a plot of theGxE term, this analysis indicates
that there is no significant GxE peak at 30AB and a peak for 3
probesets at 72A–73D. ‘‘Significance’’ lines at LOD = 3were drawn
in Fig. 7 for reference because this LOD is a common threshold
used in QTL studies. However, as discussed earlier, the ‘‘sig-
nificance’’ was determined for each probeset by permutation
analyses and differed for each probeset (see Section 4). All of the
peaks at 72A–73D in Fig. 7a are significant, and all of the peaks
at 30AB and 72A–73D are significant in Fig. 7b (Supplementary
Table S6).

Next using this ‘‘simple’’ model (intensity = G + E + GxE + error),
we calculated the GxE term for all 18,952 probesets. Interestingly,
we identified a major GxE hotspot located at 50DF that contains
819 probesets (Fig. 8a). The most significant GO category that is
enriched for the genes that correspond to the 819 probesets is

Table 3
Genes regulated by transbands in both control and treated samples. Shown are

matches between trans-eQTL transbands in control and treated data. Only 3 control

and 3 treated transbands had four or more matches in genes amongst the

transbands. Control (con), treated trt, chromosome andmap positions in cM (4-136,

4-141, 4-146, 2-71, and 4-156), and approximate cytological positions (70C–71E,

72A, 73D, 30AB, and 77E) are indicated.

trt_2-71_30AB trt_4-146_73D trt_4-156_77E

con_4-136_70C 4 14 4

con_4-141_72A 19 25 3

con_4-146_73D 14 83 30

Table 4
Description of genes co-regulated by two trans-eQTL loci. There are 19 probesets co-regulated by 72A and 30AB (CG14872 is represented by two probesets) and 14 genes co-

regulated by 73D and 30AB.

Affy_ID GO:Biological process Gene location

Co-regulated by 72A and 30AB

1. CG14872 1623028_at Transporter activity 88F7

2. CG17544 1623069_s_at Fatty acid metabolism, Pristenoyl-CoA oxidase 37D4,5

3. CG15347 1623761_at None 7E11

4. CG31087 1624569_at Nuclear gene 96D1

5. CG4781 1625816_at Protein binding 60D10

6. tsp2a 1626767_at Synapse formation, tetraspanin 2a 1F4

7. CG8907 1626881_at None 89E8

8. tsp42ec 1630051_at Synapse formation, Tetraspanin 42E5

9. CG4301 1630471_at Ion transport, Ca-transporting ATPase 14C4

10. Mocs1 1631994_a_at Mo utilization, Mo-cofactor binding protein (CG33048) 68A4

11. CG15422 1632575_at Pathogenesis 24D3

12. pcl 1633955_at Proteolysis, Pepsinogen-like 1B2

13. pes 1634913_s_at Defense response, Scavenger receptor 28D3

14. tsp42er 1634977_at Synapse formation, Tetraspanin 42E7

15. CG11961 1637042_a_at Peptidase activity 56D1,2

16. CG31720 1637306_at Signal transduction, G-protein couple receptor 31B1

17. myo61F 1638278_s_at Vesicle-mediated transport, Cytoplasmic myosin 61F6

18. CG5096 1639478_at Neuron development, Receptor in neurons 31D11

19. CG14872 1640720_a_at Transporter activity 88F7

Co-regulated by 73D and 30AB

20. CG8062 1624181_at Fatty acid biosynthesis Mono-carboxylic acid transporter 18C2

21. CG4562 1625778_at Detoxification Toxin transporter 92B4

22. CG33127 1626718_at Proteolysis Trypsin 21B8

23. CG6484 1626734_at Glucose homeostasis, Glucose transporter 54C10

24. CG3987 1627047_at Muscle development, Mesoderm development 88E2

25. RpA-70 1627380_at Protein biosynthesis, Ribosomal protein A-70 84F6

26. CG14299 1628826_at Nuclear gene 91C6

27. kappaTry 1632055_at Proteolysis, Kappa trypsin, CG12388 47E3

28. MtnA 1632873_at Metal transport, Metallothionine 85E9

29. vnd 1635383_at Neuron development, Ventral nervous system defective 1B10

30. CG1246 1638174_at None 62E8

31. inx7 1638225_a_at Gap junction protein, Innexin 7 6E4

32. CG3884 1638816_at None 49E4

33. CG10505 1639368_at Detoxification, Toxin transporter 57D7,8
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‘‘nervous system development’’ (FDR < E�10). Table 5 shows the
59 genes in this GO category, and all 59 of these genes are down-
regulated by lead. However, the meaning of this result is not clear
because very few of the 819 probesets (53) have amain effect eQTL
located at 50DF, and the robustness of a GxE effect in the absence of
a main effect is uncertain (see Section 3). The significance of the
819 probesets with GxE interactions in the ‘‘simple’’ model is
further questioned by analyzing GxE interactions in the 200
permutations of the strain labels. We found that 34 permutations
have GxE hotspots with greater than 819 probesets (Fig. 8b and c)
and that 94 of the permutations have greater total numbers of GxE-
eQTL (Fig. 8d).

Although the finding that the GxE-eQTL hotspot is enriched in
neurodevelopmental genes is intriguing, the fact that few of the 33
genes regulated by trans-eQTL at 30AB or 72A–73D have GxE-eQTL
LOD scores greater than 3 (Fig. 7c) suggests that the original

ANOVA model is incomplete. Therefore, we added a new term to
the model, L (line, the RIL designation), as a non-dependent
covariate. The new model (which we will refer to as the ‘‘full’’
model) is: intensity = G + E + L + GxE + error (Fig. 7d). This full
model indicates that a greater number of probesets have
significant GXE peaks at 30AB and 72A–73D (compare Fig. 7c
and d). Interestingly, the most significant peak is at 61A, which
does not correspond to a main effect eQTL peak. As with the 50DF
peak discussed above, the meaning of a GxE peak in the absence of
a main effect peak is uncertain. Because it is computationally
extensive, we have not yet completed the permutation analysis of
the GxE interactions with Line as a non-dependent covariate for all
18,952 probesets. However, the permutation LOD scores (with L as
an independent covariate) for the 59 ‘‘nervous system develop-
ment’’ genes are shown in Table 5 and all but 8 of them are
significant (i.e., permutation LOD > 3).

Fig. 6. Effect of lead on the expression of genes co-regulated by 30AB and 73D. (a) All 19 genes that are co-regulated by 72A and 30AB show an increase in expression after lead

exposure. (b) All 14 genes co-regulated by 73D and 30AB also show an increase in expression after lead exposure. The data in a and b is from themean expression levels from

the 75 RILs in the absence of lead and the mean levels from the 75 RILs in the presence of lead. (c–f) Effects of genotype and environment on the 14 genes co-regulated by the

transbands located 30AB and 73D. The relative expression of the 14 genes with the indicated transband genotype was normalized to 1 and the effect of changing the hotpot

genotype is shown. Notice that relative expression decreases slightly (except for one gene) in the absence of lead but increases in the presence of lead when the transband

genotype changes from 2B to ORE. A similar pattern is seen for all 19 genes that are co-regulated by the transbands located at 72A and 30AB (Supplementary Table S4).
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Fig. 7. QTL analyses of 33 genes co-regulated by two loci. (a) eQTL graphs of 33 genes in control flies. (b) eQTL graphs of 33 genes in treated flies. (c) GxE graphs of 33 genes

where line (L) is not an independent covariate (intensity = G + E + GxE + error). (d) GxE graphs of 33 genes with the full model (intensity = L + G + E + GxE + error). More genes

cross the LOD = 3 cutoff at 30AB, 61A, and 72A–73D in the ‘‘full’’ model as compared with the model lacking line as a covariate (c).

Fig. 8. Permutation analysis of the GxE-eQTL data. (a) The experimental GxE-eQTL data are plotted with eQTL location (x-axis) and number of probesets with eQTL at the

corresponding location (y-axis) (intensity = G + E + GxE + error). The hotspot with 812 probesets at 50DF is indicated (50F). (b) The GxE-eQTL results of 100 permutations is

plotted (intensity = G + E + GxE + error). (c) The rank order of GxE-eQTL hotspots (x-axis) in the 100 permutations is plotted versus the number of genes with eQTL in the

largest transband (y-axis). The experimental data (real data) has 819 probesets in the largest transband. (d) The rank order of the number of GxE-eQTL in the 100 permutations

is plotted. Notice that most (94%) of the permutations have more GxE-eQTL than the experimental data (arrow).
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3. Discussion

In the first genetical genomic study with RILs performed in
insects, we show evidence that adult D. melanogaster have 12
major master-modulatory trans-eQTLs that contain from 96 to 278
genes each, which places this organism somewhere between C.

elegans and mice in terms of the number and complexity of the
trans-eQTL targets (transbands) (Broman, 2005; Li et al., 2006). We
extended the genetical genomics approach by comparing control
flies with flies exposed to the developmental neurotoxin lead and
identified transbands that differ in the two environments. The
most interesting finding is that 33 genes are co-regulated by two
transbands, one on the second chromosome at 30AB and one on the
3rd chromosome at either 72A or 73D which is located in the
adjacent 5 cMwindow thatwas used to define transbands. Because
the resolution of QTLs is often larger than 5 cM, it is likely that the
3rd chromosome transbands are the same locus, which for
simplicity we will call the ‘‘73D transband’’ in Fig. 9 and in the
following paragraphs.

These 33 co-regulated genes show significant genotype-by-
environment (GxE) interactions for both the 30AB transband and
the 73D transband. We have recently shown by traditional
phenotypic QTL analysis that the 30AB locus is involved in lead-
dependent changes in locomotor activity, which we believe is an
important validation of the 30AB eQTL transband (Hirsch et al.,
2009).Wepropose amodel based on our data that a trans-regulator
located at 73D increases expression of its target genes when it
binds lead, regardless of the genotype of the 73D transband
(Fig. 9a). In contrast, a second trans-regulator located at 30AB only
increases expression (or otherwise increases steady-state levels of
mRNAs via transcriptional or post-transcriptional mechanisms) of
the co-regulated target genes in the presence of lead when it has
the ORE genotype (Fig. 9b). This model can explain much of the
data but other possibilities exist. For example, the putative trans-
regulator could increase the stability of the target gene mRNAs or

there could be an indirect effect on steady-statemRNA levels. Fine-
mapping the genes that underlie the QTLs, which will be aided by
sequencing both of the ORE and 2B genomes, should help in
determining the precise mechanism involved.

The first genetical genomics study that identified genes with
significant GxE interactions was a study in C. elegans in which the

Table 5
Nervous system development genes down-regulated by lead. All 59 genes are down-regulated by the GxE-eQTL hotspot located at 50DF. The permutation LOD scores are

shown. <3, NS (not significant). For 8 of the genes, the LOD score is less than 3 and not significant.

Gene name (GO: nervous system development) LOD score Gene name (GO: nervous system development) LOD score

ABNORMAL CHEMOSENSORY JUMP 6 4.4 KUZBANIAN 3.9

ALK <3, NS LADYBIRD LATE <3, NS

AMYLOID PROTEIN PRECURSOR-LIKE 8.2 LAMIN <3, NS

ANK2 <3, NS LEONARDO PROTEIN 5.1

BEATEN PATH IA 5.8 LIM1 3.4

BEATEN PATH IIA 5.3 LONGITUDINALS LACKING 3.4

BONUS 4.3 MASTERMIND 8.3

BROAD 5.0 MINIBRAIN 4.4

CACOPHONY 6.0 MUSCLEBLIND 6.2

CADHERIN-N 7.9 NETRIN-B 6.4

CHARLATAN 5.8 NEUROGLIAN 6.9

CHOLINE ACETYLTRANSFERASE 7.4 OCELLILESS 5.3

CONNECTIN 9.6 PHYLLOPOD 6.4

COUCH POTATO 5.1 POINTED 5.3

CUT 4.9 PROTEIN SPLIT ENDS 4.3

DACHSHUND 3.9 PURITY OF ESSENCE 4.8

DERAILED 4.9 RETAINED 3.6

DICHAETE 4.2 RHOGAP-93B <3, NS

DISCS LARGE 1 7.4 RHOGAP-P190 <3, NS

DLIC2 <3, NS ROUNDABOUT 5.2

DUMPY 5.0 SCABROUS 8.2

EMBRYONIC LETHAL, ABNORMAL VISION 7.2 SCALLOPED 5.9

FASCICLIN 2 6.0 SCRATCH 6.7

FRUITLESS 4.2 SCRIBBLER 4.8

G PROTEIN O 47A 7.1 STARRY NIGHT 10.6

G PROTEIN-SUBUNIT 13F 5.1 STILL LIFE 5.0

HOMOTHORAX 6.0 TRIO <3, NS

INSULIN-LIKE RECEPTOR 4.2 TURTLE 4.9

KIN OF IRRE 3.5 VEIN 6.3

KRUPPEL 3.8

Fig. 9.Model for co-regulation by trans-eQTL at 30AB and 73D. (a) The hypothetical

trans-activator encoded at the 73D transband locus (rectangle) is required for basal

transcription of the 33 genes co-regulated by both 73D and 30AB in the absence of

lead. In the presence of lead (Pb), the trans-activator encoded at the 73D transband

locus further increases steady-state mRNA levels when it has either the ORE (green)

or 2B (red) genotype. However, the trans-regulator encoded at the 30AB transband

locus (oval) further increases steady-state mRNA levels only when it has the ORE

genotype. A second possibility is that a ‘‘translational stabilizer’’ encoded at the 73D

transband locus is required for basal stabilization of the mRNA for the 33 genes co-

regulated by both 73D and 30AB in the absence of lead. In the presence of lead, the

translational stabilizer encoded at the 73D transband locus further stabilizes target

mRNA levels (i.e., protects from degradation) when it has either the ORE or 2B

genotype. In this example, the translational stabilizer encoded at the 30AB

transband locus further increases steady-state mRNA levels only when it has the

ORE genotype. A third possibility is an ‘‘indirect model’’ in which signaling

components upstream of the transcription or translation factors are regulated by

lead. In this example, the signaling protein encoded at the 73D transband locus

activates a transcription factor in either the presence or absence of lead. For

example, the signaling protein encoded at the 30AB locus could inhibit a repressor

of a transcription factor (R) better when it has the ORE genotype than when it has

the 2B genotype. In all three models, Pb induces the highest steady-state mRNA

levels for the 33 targets genes when both 73D and 30AB loci have the ORE

genotypes.
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authors identified a group of genes with trans-eQTL that are
induced by heat shock, so-called ‘‘plastic QTL’’ or pQTL (Li et al.,
2006). Smith and Kruglyak recently did a detailed analysis of GxE-
eQTL in yeast (which they call ‘‘gxeQTL’’) grown in either glucose or
ethanol as a sole carbon source (Smith and Kruglyak, 2008). Other
laboratories have identified genotype-by-environment interac-
tions in which the ‘environment’ is a different tissue (e.g., brain
versus liver; Hovatta et al., 2007), but we believe that ours is the
first ‘‘genetical toxicogenomic’’ study that combines genetical
genomics with toxicogenomics. The benefit of adding environ-
mental perturbations in genetical genomics studies is discussed in
a recent paper by Li and colleagues (Li et al., 2008). Interestingly,
we identified a GxE-eQTL transband with 814 genes that does not
correspond to amain effect eQTL transband. Of these 814 genes, 59
of them are in theGO category ‘‘nervous systemdevelopment,’’ and
51 of these genes have significant GxE-eQTL when L (line) is a non-
dependent covariate. We are undertaking a study to identify all of
the genes with GxE-eQTL in Drosophila, where L (line) is a non-
dependent covariate. The meaning of a GxE-eQTL without a main
effect eQTL is controversial, and more work needs to be done to
determine whether such GxE-eQTL are biologically meaningful.

We showed that there are 12 trans-eQTL transbands: 5 control
transbands and 7 lead-treated transbands at 11 different loci
(Table 1). The existence of trans-eQTL transbands has been
validated in yeast (Brem et al., 2002; Yvert et al., 2003), but there
is controversy as to whether trans-eQTL transbands identified in
other model organisms are real or correlation artifacts (de Koning
and Haley, 2005). This has been illustrated by a simulation study
that showed that the five most populated bins of expression data
contained 20% of the significant, but spurious, trans-eQTLs (Perez-
Enciso, 2004). One suggested solution, which we did in this
manuscript, is to perform permutation analyses of the eQTL data
(i.e., permuting the genotype assignments only and keeping the
original expression values for all the samples) (Breitling et al.,
2008). However, such permutation analyses, done by others,
seemingly invalidate numerous of the previous studies if one only
considers the size of the transband as the most important criterion
(Breitling et al., 2008). Therefore, we have more extensively
analyzed the permutations in our study and found that (1) the
number of transbands, (2) the total number of eQTL, and (3) the
number of identical genes in control and treated transbands might
be more important criteria than the absolute size of the transband.

Another approach to validating transbands is to test gene
expression for individual probesets within them for significant
genetic correlation with variation among lines for functionally
related traits assessed independently. The 30AB region of the
Drosophila genome has been identified as both a behavioral QTL for
changes in locomotion in response to lead treatment (Hirsch et al.,
2009) and as a transband in the present study that regulates 194
probesets in response to lead. We can therefore search for
individual probesets within the 30AB region showing variation
in gene expression after lead exposure among roo lines that is

correlatedwith variation among the same lines for their behavioral
response to lead to further identify potential candidate genes for
both the behavioral and transband eQTL. Any probesets identified
in this manner can be further screened by correlating gene
expression from candidate probesets linked to 30AB with gene
expression from candidate probesets regulated from the 30AB
transband.

For present purposes, we focused on 122 probesets that include
30AB and the proximate half of the adjacent regions 29F and 30D
(measured by base-pair distances). We identified seven probesets
among the 122 spanning 30AB that showed correlations at a level
of P < 0.05 (Table 6). We identified Ggamma30A (CG3694),
involved in G-protein signal transduction and cell cycle regulation
as the probeset in the 30AB region with gene expression most
strongly correlated with both lead-induced behavioral changes
and lead-induced changes in gene expression among those
probesets regulated from 30AB. Ggamma30A has human and
other mammalian orthologs with similar function, and has been
associated in mice with gustation (Huang et al., 1999).

Although these cursory analyses for purposes of discussion
have not been corrected for multiple comparisons, they illustrate a
simple and direct method for correlating functional traits
associated with lead exposure to gene expression levels in
response to lead as an independent method for screening
candidate genes of interest within identified QTL. The combination
of gene expression data and data on functional traits in the same RI
lines provides a more precise method for a priori screening of
candidate loci representing significant QTL than either method
alone would allow. This approach should be able to increase the
probability of identifying valid candidate loci represented by eQTL
to facilitate confirmation by direct genetic methods such as
deletion mapping and gene silencing, at least in cases where
functional trait QTL are derived from strain differences in traits
that are a direct function of strain differences in gene expression.

In the absence of data on functional traits and functionally
related gene expression in the same RI lines, a priori identification
of candidate genes for a QTL is limited to what is already known
about the functions of closely linked loci. In the present case,
examining the known or predicted functions of the 122 genes
closely linked to our behavioral QTL reveals one that is a strong
candidate based on predicted function (CG3759: ‘‘laccase-like’’)
associated with defense against toxins, iron and copper binding
(Flybase). Although gene expression from this probeset is not
correlated with the behavioral response to lead, it may represent
genetic variation that acts developmentally to mediate behavioral
responses to lead at a physiological or anatomical level that does
not depend on adult gene expression.

We have alsomeasured variation among these roo lines for lead
burden in response to the same lead treatment used here to assay
gene expression in response to lead treatments, and have identified
three significant QTL for this trait (unpublished) that do not
overlap with either the behavioral QTL (Hirsch et al., 2009) or the

Table 6
Candidate genes from 30AB that mediate the behavioral response to lead. We took gene expression data for 122 probesets nearest our behavioral QTL and asked whether or

not strain differences in gene expression levels for these, individually, were correlated with the behavioral change induced by lead treatment. There were seven ‘‘significant’’

(e.g. unadjusted for alpha=0.05) correlations. Ggamma30A is represented twice by two different probesets, as indicated by the Affymetrix ID (Affy ID).

Gene name Correlation coefficient P-value Protein function

Cks30A (CG3738) r=�0.266 P=0.03 Amino acid phosphorylation, cell cycle regulation,

histoblast morphogenesis

Ggamma30A (CG3694) Affy ID 1637526_S_at r=0.328 P=0.007 Signal transduction via G-protein, visual perception

Ggamma30A (CG3694) Affy ID 1628754_S_at r=0.31 P=0.011 Signal transduction via G-protein, visual perception

CG3838 r=0.276 P=0.024 DNA binding

Nckx30C (CG18660) r=0.309 P=0.011 Ion transport: K, Na, Ca; compound eye development

CG9525 r=�0.288 P=0.018 No known function

CG9573 r=�0.328 P=0.007 Protein binding
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transband eQTL identified here in response to lead treatment. This
observation suggests that our transband pattern of gene expres-
sion in response to lead is not significantly dependent on strain
variation in lead burden, although further analysis of individual
probesets may reveal interesting associations.

Systematic analysis of genetic correlations among probesets for
gene expression and functional trait expression in response to lead
exposuremay help identify specific candidate probesets of interest
within each of the transband QTLs. Genetic validation of the
putative trans-regulators in our transbands is required to
authenticate this proposition, but, if validated, it represents a
significant change in how to interpret eQTL analyses.

3.1. Limitations of genetical genomics studies

There are limitations common to all eQTL studies. For example,
previous genetical genomics studies have determined that
probeset expression levels are often apparently polarized for
expression based on genotype—i.e., probesets of one genotype in
the RILs have higher relative expression levels compared with
probesets of the other genotype. For example, in studies with BXD
mouse RILs, whichweremade from the C57BL/6J sequencedmouse
strain (for which the probes were designed) and the DBA/2J strain,
a significantly larger number of the probesets with the C57BL/6J
genotype have an apparently higher relative expression level than
with the non-sequenced genotype (Chesler et al., 2005). The
apparent polarization of expression based on genotype is now a
well-known design flaw of microarray experiments because
probes that fail to hybridize to a gene because of a sequence
mismatch could be erroneously scored as having lower expression
(Pienta and Esper, 1993). We controlled for this by eliminating
probesets that have ‘‘outlier probe(s)’’ with significantly lower
signal(s) than the other probes in the probeset.

Another major limitation of our genetical genomics study is
that if the regulation of a lead-dependent master-modulatory gene
is identical in the progenitor strains ORE and 2B, then these master
regulators would probably not be identified in our analysis. An
approach that analyzes gene expression patterns in populations of
flies, such as the quantitative trait transcript technique (Passador-
Gurgel et al., 2007; Ruden, 2007), or an eQTL approach that uses
more than two progenitor strains (Flint et al., 2005), will likely
identify further GxE-eQTL transbands and lead-dependentmaster-
modulatory genes.

A further limitation of our experimental design is that
anatomical alterations are likely induced by either lead or
genetics. For example, if some of the flies have a bigger brain
(or any other tissue sincewe analyzedwhole flies) then onewould
find up-regulation of brain (or some other tissue) associated
genes. However this would not necessarily be true if only
equivalent amounts of the tissue in question were compared.
Therefore, as discussed as a general limitation of microarray
design in whole organism studies (Chintapalli et al., 2007), the
observed effect would not be a transcription effect but rather is a
function of strain differences occurring on a larger anatomic scale.
We and others have observed that the lead concentration that we
used causes developmental delays, but these developmental
delays are not accompanied by changes in the adult body weight
(Akins et al., 1992). However, we and others have shown that
certain traits such as triglyceride levels and body mass vary
considerably in the RILs that we used in our studies (Clark and
Keith, 1988; De Luca et al., 2005). Therefore, these caveats should
be considered in the interpretation of our data and in similar
studies.

Whydidweusewhole flies for these studies instead of heads or
brains? The co-authors extensively discussed this issue before
deciding on using whole flies. We thought that starting with

whole flies is the best approach because lead has numerous
physiological effects throughout the body, and not just in the
nervous system. We also believed that lead could have global
effects on gene expression in a conserved manner, but the
neuronal effects would become manifest only in the nervous
system.We also argued that ifwedecided to analyze only the head
(of which over half is brain and eyes, which are also parts of the
nervous system), then we might be overlooking interesting gene
expression changes that occur in the PNS (e.g., ganglia) and other
parts of the body. Furthermore, a criticism of mouse genetical
genomics experiments that use whole brains is that smaller
regions of the brainwould have been preferred. ForDrosophila, we
believe the next step should be to repeat these studies with fly
heads or, even better, specific types of neurons or brain regions by
using a purification technique, such as the bacTRAP technique that
was developed for purifying mouse Purkinje cells and other
neuronal types (Doyle et al., 2008; Heiman et al., 2008; Selimi
et al., 2009).

Why did we only do one microarray experiment for each of the
75 RILs in the presence or absence of only one concentration of
lead? The most obvious answer is that this would have been
prohibitively expensive. However, the great advantage of genetical
genomics studies over other types of gene expression studies with
microarrays is that the most important unit of replication is the
genotype of a particular genome region (ORE or 2B) and not the RIL.
Sincewe performed 150microarrays, we analyzed gene expression
of the ORE genotype �75 times and of the 2B genotype �75 times
for each region of the genome. Not many studies have run 75
replicate microarray experiments, but we have essentially done so
in this study.

What is meant by a ‘‘significant’’ change in gene expression?
We decided to go by P-value (via two tailed t-test) rather than by
absolute change in gene expression (e.g., a minimum 1.5-fold
change used by many investigators). The main reason that some
other studies use a threshold of 1.5 as being ‘‘significant’’ is that
they wish to identify the genes that are likely important in a
response, and it can be argued that a change in steady-state mRNA
levels of only 1.2 is unlikely to cause a significant change in protein
levels. However, this is not the case in our studies because we are
primarily interested in pathways (i.e., transbands) rather than
individual genes, so we believe that ‘‘significance’’ by t-test is a
more robust approach. Also, since we essentially replicated our
studies�75 times for the genotype of each region of the genome, a
1.2-fold change, which is a typical change in gene expression in a
probeset in the transbands, can be very significant.

What is the cost effectiveness of doing genetical genomics in
Drosophila versus mice or some other model organism? In general,
the smaller the genome, the more powerful the genetical genomic
studies can be. For example, genetical genomic studies donewith a
similar number of RILs in the small-genome organism Sacchar-

omyces cerevisia havemapped cis-eQTL and transbands to the exact
polymorphism (Demogines et al., 2008). Genetical genomics
studies in C. elegans, which has a similar genome size as D.

melanogaster, can map eQTL to within 5 cM, which corresponds to
dozens or hundreds of genes, but further fine-mapping studies can
be quickly done to identify the exact polymorphisms responsible
(McGrath et al., 2009; Reddy et al., 2009). Genetical genomics
studies have also been done extensively in rats andmice (Bao et al.,
2007; Druka et al., 2008; Li et al., 2005), which have a further 10–
20-fold increase in genome size, but the precision of these studies
is consequently much broader and fine-mapping studies are much
more difficult. Fortunately, next-generation ‘‘cheap sequencing’’
technologies have begun to enter the genetical genomics field
(Bloom et al., 2009), and these techniques might soon allow these
studies to become cost effective in mammalian models for even
small laboratories.
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3.2. Evolution in a toxic environment

Responses to stressors must play a vital role in evolution, and
our results provide insights intomechanisms thatmay be involved.
We identified several transbands that might contain master-
modulatory proteins that are affected by lead in one genotype but
are insensitive to lead in the other genotype. Since we started with
only two parental lines, there might be many more such master-
modulatory proteins in the genome in a population of Drosophila
that are similarly evolving. Another question is whether these
samemaster-modulatory proteins uniquely acquired sensitivity to
lead, which seems unlikely, or respond in similar manners tomany
environmental toxins. Toxin-induced changes in the regulation of
these proteins might result in the development of a slightly
‘‘modified’’ nervous system that could enhance fitness in a
contaminated environment. Consistent with this, lead-induced
changes in mating and in fecundity in Drosophila (Hirsch et al.,
2003) can be interpreted in terms of changes in resource allocation
by the female that may, from a long-term perspective, be adaptive.
The studies presented here showmany promising new avenues for
investigation.

There are several practical applications for the data generated
in the study. The data will be deposited in the GeneNetwork
website (http://www.genenetwork.org) so that other investiga-
tors can look for correlations between gene expression patterns
and phenotypic traits. The GeneNetwork is an open resource and
consists of a set of linked resources for systems genetics. It has
been designed for integration of networks of genes, transcripts,
and traits such as toxicity, cancer susceptibility, and behavior for
several species. Phenotypic QTLs using the roo lines were
identified in numerous other QTL mapping studies (Gurganus
et al., 1998, 1999; Jordan et al., 2006; Leips and Mackay, 2000;
Long et al., 1995; Pasyukova et al., 2000; Vieira et al., 2000;Wayne
et al., 2001). For sets of phenotypes, particularly those in Gene
Network’s databases (Drosophila phenotypes are not yet in this
database), a variety of correlation analyses can be performedwith
the gene expression data. Trait values entered by users or
retrieved from the databases can be correlated with any other
database of phenotypes from the samemapping genetic reference
panel, in our case, the roo lines. The future addition of our data and
other Drosophila QTL data to GeneNetwork will be a tremendous
boon to theDrosophila community and to the genetics community
in general.

4. Materials and methods

4.1. D. melanogaster stocks, growth, and RNA extraction

The 75 Drosophila roo lines were obtained from Trudy Mackay.
To avoid batch effects (Zakharkin et al., 2005), the growth of the
flies, the RNA extraction and the order of running the arrays, and
the fluidics well used for each array was completely randomized
for the 75 lines in two treatments. Control food consisted of
standard cornmeal, agar, sugar, yeast, and 250mM NaAc (Ash-
burner, 1989). Lead-contaminated food consisted of standard food
plus 250mM PbAc (lead exposure at this concentration has been
shown to affect locomotion in adults; Hirsch et al., 2003). Flies
from each of the 75 roo lines (20 males and 20 females) were
placed in a vial with 10 ml of food (control or PbAc) for 3 days at
25 8C and allowed to lay eggs; the adults were subsequently
discarded. Newly enclosed adult males were placed on the same
medium (control or PbAc) as had been present during pre-adult
development for 5–10 days before being used as subjects. Male
progeny were pooled from each vial (65 males per vial) and frozen
at �80 8C. RNA samples were extracted in groups of 24 and arrays
hybridization run in groups of 4 with 3 groups run per day. Effects

of RNA extraction and array hybridizations day were examined by
ANOVA and Support Vector approaches and no obvious day effects
were observed (data not shown).

4.2. RNA extraction and hybridization

Total RNA was isolated following Trizol Manual (Invitrogen
Life Technologies) with modifications made by Kevin Bogart and
Justen Andrews at Indiana University. Frozen flies (50 mg) were
homogenized with Poly Tron (Kinematica AG) in a 5 ml tube with
2 ml of Trizol. The homogenate was incubated at room tempera-
ture for 5 min followed by centrifuge at 12,000 rcf for 10 min at
4 8C to pellet insoluble debris. 1 ml supernatantwas transferred to
a new centrifuge tube and 0.2 ml chloroform was added. After
shaking the tube vigorously by hand for 15 s, sample was
incubated for 3 min at room temperature and then was
centrifuged at 10,000 rcf for 15 min at 4 8C. 0.54 ml aqueous
phase was carefully transferred to a fresh RNAse-free tube and
0.45 ml isopropanol was added to each tube followed by
vortexing. After 10 min incubation at room temperature, sample
was centrifuged at 12,000 rcf for 10 min at 4 8C. Supernatant was
then removed and the pellet was washed with 1 ml 75% ethanol
followed by centrifuge at 7500 rcf for 5 min at 4 8C. After the
supernatant was removed and the pellet was air dried for 10 min
at room temperature, the pellet was resuspended in 40 ml RNAse-
free water at the end. All RNA samples were lead-treated with
DNase I in order to get rid of potential DNA contamination. The
quality of each RNA sample was determined on 2100 Agilent
Bioanalyser before proceeding RNA labeling.

RNA quality was assessed using the Agilent Bioanalyzer. Since
Drosophilia generate atypical peaks (18S RNA is absent) the 18S
to 28S ratio was not studied, however the bioanalyzer results
were used to determine if the RNA extraction was clean. Samples
that failed were re-extracted from other flies. The RNA that
passed the quality checks were run on the Affymetrix Drosophila

genome 2 Array1. This array has 18,952 probesets and each
probeset is composed of on average 14 probe pairs with 11 mm
feature size.

4.3. Microarray quality control

The images were initially processed with MAS 5.0 for quality
control. Multiple quality control steps were used. The images of all
arrays were manually inspected for defects. The 30/50 ratio of beta
actin was verified as being between 1.5 and 3. The chip to chip
Pearson’s correlation was examined (mean correlation<0.91 to all
other arrays set to being poor). The geography Index (Kim et al.,
2006) and a deleted residual (Persson et al., 2005) approach were
also used, and a cutoff of a KS-D of 0.15 was considered poor
quality. These steps resulted in 3 arrays being excluded. These
were the roo line 54with lead, and roo lines 11 and 21with control
treatment. These quality control steps resulted in the eQTL analysis
being conducted on 73 control roo lines and 74 lead lines with a
total of 72 lines being measured in both treatments.

4.4. Expression quantification

The 147microarrays that passed quality controlwere processed
as a single group using the justRMA function of the Bioconductor
software package.

4.5. Markers genotypes

Marker information for a total of the 75 roo lines which were
typed for a total of 82 markers. Heterozygotes were set to missing
in these lines.
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4.6. Annotation

The annotation used in this experiment is that provided by
Affymetrix’s Netaffx (Cheng et al., 2004; Liu et al., 2003) for the
Drosophila genome 2 array data March 27, 2006. A total of 18,147
probesets had physical genetic positions. 805 probesets without
genetic position are included in the table of P-values (Tables S2 and
S3), but are excluded from the eQTL figure (Fig. 2a). These 805
probesets without a position, had 7 significant locations in the
control flies and 13 for the lead-treated flies.

4.7. Number of replicates

We chose not to use replicates in this study, and instead
devoted more resources to more lines. As a result, we were able to
obtain measurements on 75 RILs under control conditions and 75
RILs under lead-treated conditions with only one microarray per
line per condition (i.e., 150microarray total analyses). If fewer than
75 RILs are used, or if one studies organisms with larger genomes,
such as with the mouse BXD RILs which only have 30–40
commercially available lines (however, see Peirce et al., 2004),
then duplicate or triplicate microarrays would probably be
necessary for each experimental condition to obtain statistically
significant results. Also, if ‘‘collaborative cross’’ RILs are used,
which were made by crossing multiple mouse inbred lines
(Churchill et al., 2004), then many more lines or replicates will
be needed to match the power of using 75 RILs in simpler
organisms such as yeast,Drosophila or C. elegans.What is important
to understand in a genetical genomics experiment is that the unit of
replication in themicroarray analyses is the RI line and treatments and
not the animal or the DNA aliquot. Therefore, if one has a
sufficiently large number of RILs and a limited budget, then it is
statistically more powerful to analyze more RILs with a single
microarray per line than to conduct multiple microarrays on the
same RI line.

4.8. Analysis

The expression values of the 147 arrays passing quality
control were divided into their two groups, lead-treatment and
control, with 73 or 74 in each. eQTL analysis was conducted on
each of the two groups and then jointly with an interaction term
between the treatment and locus (3 total analyses). The R/qtl
(Broman et al., 2003) package was used to map QTL. Probabilities
of putative QTL genotypes were computed in the 5 cM interval
along the genome. Haley–Knott regression method (Haley and
Knott, 1992) was used to map the QTL controlling the
transcripts. Genome-wide significant level was established by
permutation at 0.05 level (Churchill and Doerge, 1994) which
corresponds to a P-value of 0.0001. Genome-wide significance
was achieved at 2907 locations in the RMA processing control
animals. The 2907 includes probesets that have significant
linkage at more than one location in the genome. There were
3467 significant eQTLs in 3017 genes for the RMA processed and
lead-treated flies (Fig. 1).

Fig. 2a and b shows the heritability estimates for the data.
Heritability is calculated in the narrow sense:

1=2Va

ð1=2Va þ VeÞ

where Va is the variance due to strain and Ve is the variance due to
environment (error) (Falconer and Mackay, 1996). Supplementary
Fig. S1a provides the heritability without treatment effects. Mean
heritability is 38.7% (y = strain + error). Fig. 2b provides the
heritability with treatment effects. Mean heritability is 40.6%
(y = strain + treatment + error).

Fig. 2c shows the P-values for all markers (82 markers), and
every 5 cM between markers by all expression traits. As can be
seen there are more ‘significant’ (P < 0.05) than expected at
random. We calculated the conservative Benjamini-Hochberg FDR
(1995) for the data, and determined the FDR based on all P-values
for all marker and trait combinations. As can been seen, at an alpha
level of 0.0001, which is extensively used in this paper, the FDR is a
bit more than 4% (Supplementary Table S3).

4.9. Enrichment analysis

Trans QTL bands were defined as having a significant number of
probesets having linkage with 5 cM of a genomic position. The
transbands identifiedwere in 3E, 30AB, 57F, 65A, and broadly 72A-
87F in the lead-treated flies and at 27B, 50D/F, and broadly 70C–
85F in the control flies. The probesets with at least a point wise
significance of P < 0.005 were selected for enrichment analysis
(Khatri et al., 2002). The DAVID (Dennis et al., 2003; Hosack et al.,
2003) programwas used to look for enrichment of classes of genes
with linkage to these positions (3E (174 significant), 30AB (150
significant), 50DF (70 significant), and 65A (41 significant). A P-
value based upon the hypergeometric distribution and at least 5
probesets with a particular GO term being linked to a region was
required to define significant enrichment. Supplementary Tables
S2 and S3 show the complete results.

4.10. Identification of potential false positive cis-eQTL

One concernwith using Affymetrix short oligonucleotide arrays
is that a probeset containing 14 perfectmatch probes could contain
one ormore probes that has a SNP in eitherORE or Russian 2b. If this
is not taken into account, this could result in false positive cis-eQTL.
Therefore, we implemented mixed-model analysis of variance in
SAS (Wolfinger et al., 2001) to identify potential false positive cis-
eQTL in a method similar to that described by Gibson and
colleagues (Hsieh et al., 2003). However, we did not treat the probe
as a random effect since we needed to test the probe-by-fly line
effect. The model we fit is: Probe intensity = treatment + fly
line + probe + (probe) � (fly line) + error. We tested the interaction
term, (probe) � (fly line), and probe intensity were ln(natural log)
transformed and normalized as previously described (Hsieh et al.,
2003). Finally, we eliminated cis-eQTLs that had a ‘‘snp_pvalue’’ of
greater than 0.01 as a potential false positive cis-eQTL. This
approach to improve the data resulted in elimination of �25% of
the cis-eQTL as potential false positive cis-eQTL (see Supplemen-
tary Table S2).

4.11. eQTL mapping: experimental design and data acquisition

Mackay’s laboratory described the generation of recombinant
inbred lines (RILs) ofD.melanogaster fromhomozygous strainsORE
and Russian 2b (Nuzhdin et al., 1997). Briefly, F1 progeny were
backcrossed to Russian 2b and the backcross progeny were
randomly mated for four generations. At the fifth generation,
200 pairs were selected and progeny were inbred by full-sib
mating for 25 generations.

The geneticmap consisted of 80 transposable element insertion
sites on chromosomes X, 2, and 3. The X chromosome was
represented by 17 markers from cytological positions 1B to 19A.
Chromosome 2 was represented by 20 markers from cytological
positions 21E to 50DF and by three markers from cytological
positions 57C to 60E. As no linkage disequilibrium was detected
between markers at 50DF and 57C, chromosome 2 was artificially
divided into two linkage groups, 2 and 2*. Chromosome 3 was
represented by 40markers from cytological positions 61A to 100A.
Chromosome 4 was excluded from our analyses.
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