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Abstract 
 
GeneNetwork and its earlier iteration, WebQTL, have now been an important database and 
toolkit for quantitative trait genetics research for two decades. Recent improvements to 
GeneNetwork have reinvigorated it, including the addition of data from 10 species, multi-omics 
analysis, updated code, and new tools. The new GeneNetwork is now an exciting resource for 
predictive medicine and systems genetics, which is constantly being maintained and improved.   
Here, we give a brief overview of the process for carrying out some of the most common 
functions on GeneNetwork, as a gateway to deeper analyses, demonstrating how a small 
number of plausible candidate genes can be found for a typical immune phenotype. 
   
 
Introduction 
It is abundantly clear that no aspect of biology works in isolation: cells are filled with networks 
of interacting proteins; the environment interacts constantly with gene expression; and 
seemingly tiny perturbations of the genome can lead to lethal diseases. Systems genetics seeks 
to investigate this by integrating all levels of biology. To do this requires coherent data, 
gathered together into an easily accessible format, not siloed into disparate data pools that 
cannot easily be integrated, validated, or extended. This approach will allow us to make animal 
models of so called ‘precision’ medicine, although perhaps more accurately, we want  
predictive medicine, where a phenotypic outcome (such as disease) can be predicted, and 
avoided.   
GeneNetwork  (genenetwork.org; GN) is one tool for systems genetics and predictive medicine, 
and this newest version of the web service is the latest iteration of the website that started in 
2001 as WebQTL  (Chesler et al., 2003, 2004). GN provides researchers access to large amounts 
of diverse data sets ranging from molecular profiles to classical phenotypes, in both a 
genetically and computationally coherent manner (Sloan et al., 2016; Wang et al., 2016; 
Mulligan et al., 2017; Parker et al., 2017; Li et al., 2018). Although GN started life as a repository 
for CNS morphometric and behavioral data for the BXD family of mice, it has expanded to 
include many datasets, across a variety of species and designs, as well as a toolkit for their 
analysis. A simple Google Scholar search for ‘GeneNetwork.org’ or ‘WebQTL’ shows over 1400 
papers have referenced this resource.  
 
The traditional use of GN was for ‘simple’ forward genetics: identifying a genetic locus 
underlying variation in a phenotype of interest. However, it has grown far beyond this, with the 
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addition of extensive, coherent datasets, allowing for the integration of multiple levels of 
biology, as data gathered in different laboratories at different times can be seamlessly 
combined to provide novel insight. As whole genome-sequence data has become available for 
many populations used in GeneNetwork, reverse genetics has become possible: moving from 
variants or genetic loci of interest, and identifying the phenotypes that they influence, so called 
phenome-wide association studies (PheWAS) (Denny et al., 2010) or reverse complex trait 
analysis (Li, Mulligan et al., 2010).  
 
GeneNetwork provides to tools and data to do forward, reverse, and systems genetics. 
Exploring genes, molecules, and phenotypes is easily accomplished using GeneNetwork. In this 
manuscript we will outline some simple use cases, and show how a small number of plausible 
candidate genes can be identified for an immune phenotype.  
 
1. Data 
Once you have navigated to genenetwork.org, there are two ways to search for data in GN. The 
first is to use the global search bar located at the top of the page (Figure 1). This is a new 
feature in GN that allows researchers to search for genes, mRNAs, or proteins across all of the 
datasets. This will give the user data for that search term across many different species, groups, 
and types of data. Because of this, the global search bar is a good area to start one’s searches if 
you have a particular gene of interest, but are unsure of what species or populations are 
relevant, or simply to get an overview of what datasets are available on GN. When searching for 
genes, it is critical to use standard gene symbols containing more than two characters. This 
search takes a few minutes to complete, as it is searching through several hundred data sets 
across species with millions of traits. Although this search will return with a large collection of 
results, up to 6000 rows, it is also simple to filter on the results page. This demonstrates one of 
the highlights of GN: large omics datasets have already been analyzed and checked for errors, 
and then formatted so that they can be directly compared. These seemingly simple points can 
often take up a large amount of a bioinformatician’s time, and make datasets inaccessible to 
‘wet-lab’ scientists.  
Similarly, by using the dropdown menu on the left (Figure 1), a user can switch to phenotypes, 
and search for any phenotype of interest in the same way. 
 
 
 
 
 
 
 
Another area to acquire data is the Select and search pull-down menus (Figure 2). To get 
started, the user has to choose a population of interest. GeneNetwork contains data from a 
wide range of species, from humans to soybeans, but most of the available phenotypic data is 
from mice. Within the mouse dataset there are groups of families, crosses, non-genetic 
groupings, and individual data. The type of dataset must be selected after defining the species 
and sample population. While genotypes, mRNA, methylated DNA, protein, metagenomic, and 

 
Figure 1: The global search bar, also called the Search All function, is a good area to start exploring 
genes, mRNA, and proteins within GeneNetwork. To best use this new tool, use standard gene symbols 
containing more than two characters in the name.  
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.23.424047doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.23.424047


   
 

3 
 

metabolome datasets are available (i.e. molecular omics phenotypes), the simplest starting 
point is the phenotype dataset.  
 
We will use the BXD family (Figure 2A)(Ashbrook et al., 2019), for this demonstration, as it has 
the largest phenome group of over 7000 phenotypes collected over 40 years (Figure 2B), as 
well as over 100 omics datasets, allowing the broadest systems genetics analysis. They have the 
advantage of each genome being infinitely replicable, unlike F2 or outbred populations, where 
each individual represents a unique genome.  
 

 
Figure 2 shows the available input fields using the Search function. The first search field is for 
an ‘any’ search, whereas the second is for an ‘all’ search. For example, let us imagine that we 
are interested in the regulation of the immune system. Once the user has found the 
appropriate search parameters for their study, they can also lock that selection by choosing the 
Make Default button (Figure 2C). To gather a broad collection of phenotypes, we could fill the 
Get Any with ‘inflammation immunity infection cytokines’ and this will search for any 
phenotype description which contains the word inflammation OR the word immunity OR the 
word infection OR the word cytokines (over 240 entries in June 2020). If, on the other hand, we 
are only interested in cytokines from T cells, we can use the Combined search box with ‘T cell 
cytokine’, which will find any phenotype where the description contains the word ‘T’ AND the 
word ‘cell’ AND the word ‘cytokine’ (12 entries in June 2020). 

 
Taking this second search as our example, the user must decide which of the phenotypes are 
relevant to their interest. The initial search produces a records table (Figure 3). This table 
displays the record ID, a brief description of the project or publication, the authors of the 

 
Figure 2:  Select and search menus make it simple to access a database of phenotype, omics, and 
genotype data for humans and plant and animal populations and families. For the purposes of this 
primer, the Mouse BXD family (2A) Phenotypes (2B) is selected. The Make Default button (2C) 
allows users to ‘lock in’ their choice of search criteria, immediately returning to the same dataset 
the next time GN is opened. 
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dataset, the year it was published, as well as LRS information. The maximum LRS value will 
indicate if there is a locus within the BXD family of mice which influences that phenotype. The 
table also indicates where the maximum LRS value is found within the genome, specifically the 
location of the marker with the strongest linkage to the phenotype. In Figure 3A, we have 
selected the phenotype with the highest LRS value.  

 
Another powerful feature of GeneNetwork is the ability to create and analyze whole collections 
of data. In Figure 3 there are boxes within the table that can be selected in order to form a trait 
collection. To do this, select the boxes in the table that suit the interests of the study, and press 
Add. This function allows groups of traits to be saved for later analysis such as the generation of 
a QTL, a network graph, and correlation matrix, some of which will be investigated further in 
this guide.  
 
To access trait data and analysis tools, select the record ID of interest (Figure 3A), and this will 
take you to the record page (Figure 4). This record provides a reminder of the species and 
group being used (Figure 4A), and a description of the phenotype (Figure 4B). Phenotypes in 
GeneNetwork ideally follow a set formula, written by the contributor. The first part of the 
phenotype will be a general grouping, comma separated (Blood chemistry, metabolism). This 
allows users to easily find large groups of related phenotypes. After the colon is a specific 
description of the trait, in this case expression levels of the cytokine RANTES (regulated on 
activation, normal T cell expressed and secreted, also known as CCL5) measured in the plasma 
using the Luminex assay after 12 hours of fasting, in 29 week old males on high fat diet 
(Williams et al., 2016). The authors of any related manuscript (or the lab group who gathered 
the data) are shown, as well as the title and links to the published paper (Figure 4C). There is 
also a button to add the trait to a collection (see below; Figure 4D), and to view this trait in the 

 
Figure 3: The search results table supplies the necessary information to continue the search for 
QTLs. Record number, description of the study, authors, year and LRS information are listed to help 
narrow down possible genetic targets. The table can be sorted by any of these columns, by clicking 
on the arrow next to the column title. The record ID of interest for this study is 3A, as it has the 
highest LRS value. 3B highlights the boxes that can be selected in order to form a trait collection. 
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earlier version of GeneNetwork, GN1 (Figure 4E). Some less used tools have not been ported 
across to the latest update, or some users may wish to use a pipeline that they have developed 
in the past.  
 
The data uploaded to GN are farther down the page, along with statistical tools to normalize 
the dataset. The probability plot is a useful tool to visualize the data, as it allows researchers to 
see the distribution of the data before analyzing it (Figure 5). In cases where the distribution is 
close to normal, the trait values (Y-axis), will correlate well with the theoretical quantiles (X-
axis). Samples far away from this X=Y lines are likely outliers, which can skew the results from 
the analysis. Other deviations, such as an S-shape (somewhat seen in Figure 5), abrupt breaks 
between samples, or a set of ripples, are good indicators that there is one or more large effect 
QTL for that trait.  
 
In this case, the data distribution is fairly normal. However, the transformation and filtering 
option is located under the statistical tools drop down menu if necessary. In this function, 
outliers can be blocked, and the data can be normalized by Log2, Z Score, quantile, square root, 
or the data can be inverted. Specific data points can also be blocked using this feature.  
 
The bar chart visualization is another useful tool, as when sorted by value it allows us to see 
both the distribution of strains, and the standard error of values. We can see that BXD75 has a 
high value, but also a very large SE. In the new GN we can now go down the trait page and 
remove BXD75 from the analysis to see if it is having an undue effect on the analysis. In this 
case the QTL is not significantly altered by removing BXD75, and so the stain was kept for 
subsequent analyses. To do this, we simply press the green reset button. 
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Figure 5: Statistical analysis tools to help normalize the data before investigating QTLs. One of the 
best ways to initially view the data is by using the Probability Plot. This provides viewers with a visual 
representation of the data. If the data is skewed, it will not follow the normal function line. For this 
dataset, the probability plot shows that the data is not normal, but is in an S shape. This could suggest 
that there is a large QTL that could possibly account for that, or that the data needs to be normalized. 
After viewing, it is then possible to normalize the data with the Statistical Tools drop down menu.  
 

 
Figure 4: Trait data shows the identifying information of the record including the group name (4A), 
phenotype being tested (4B), authors of the project, title of the project or paper, journal of 
publication, and links to the dataset database and to the published paper (4C). There is also an option 
to add this trait to your collection by pressing the Add button (4D), or to view this trait in an earlier 
version of GeneNetwork, GN1 (4E). 
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Figure 6: Mapping tools available in GeneNetwork. At the top of the pull-down menu, there are 
three buttons that can be selected to analyze data using the three mapping tools. We currently 
recommend using both Haley-Knott Regression and GEMMA together to gather the best results.  
 

 
Figure 7:  QTL map of the whole genome of the BXD mice in this data set with peaks according to 
association with the phenotype being tested. The grey line indicates the suggestive LRS values, with a 
p-value = 0.63 (one false positive per genome scan), as determined by permutations of the data. The 
red line indicates the significant LRS value (p-value = 0.05), which for this dataset is an LRS value of 
18.43. The blue line shows the linkage between the trait and that position along the genome. The 
orange/green line represents the additive effect. The yellow bar shows the frequency of the LRS 
peak location from 2000 bootstraps of the data.  
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2. Mapping 
 
QTL 
There are thousands of ‘classical’ phenotypes publicly available on GeneNetwork (GN). These 
classical phenotypes are mainly whole-body phenotypes similar to the kind that have been 
collected and studied for over a century.  This is in contrast to molecular phenotypes, such as 
gene expression or epigenetics. GN allows for the integration of these phenotypes, and even 
entire phenomes, into a systems genetics analysis. One way to analyze large sets of genetic 
data is to find a quantitative trait locus, or QTL. A QTL 
(http://gn1.genenetwork.org/glossary.html#Q) is an area on a chromosome that can contain 
one or many genes, that is linked to a change in phenotype. After a QTL that is responsible for 
the apparent variation in phenotype has been identified, one can start studying the genes 
within that locus to identify the likely causal gene.  
 
Once the data is normalized appropriately (in our case, no normalization was required), the QTL 
can be mapped. To do this, select the mapping tools drop down window (Figure 6). There are 
three methods to choose from, GEMMA, Haley-Knott Regression, and R/qtl (Figure 6). Genome-
wide Efficient Mixed Model Analysis (GEMMA; github.com/genetics-statistics/GEMMA; (Zhou 
and Stephens, 2012) is a multivariate linear mixed model mapping tool that is used to map 
phenotypes with SNPs with a correction for kinship or any other covariate of interest. This 
ability to account for covariates is highly useful, but also this increases the time taken for 
computations. However, given the complex relatedness amongst the BXD strains, GEMMA is 
the best tool to use with the BXD cohorts. GEMMA produces a Manhattan plot with 
chromosomes on the x-axis and a -log(P) scale on the y-axis. This -log(P) is approximately equal 
to a LOD score in this population. The Haley-Knott Regression is the classic method, which has 
been used in GeneNetwork for almost 25 years (Haley and Knott, 1992).  Haley-Knott 
Regression uses multiple regression formulas to analyze the likelihood ratios between traits and 
phenotypes, and these calculations are much faster than those used in GEMMA. However, it is 
not recommended for closely related populations or admixed populations, as it does not 
consider relatedness or kinship between samples, and so is not fully appropriate for many 
populations. It is still very useful for F2 intercrossed populations and backcrosses. Due to the 
great speed of calculation, Haley-Knott Regression also allows us to carry out permutations to 
determine an empirical statistical significance threshold: the default on GN is 2000 
permutations, but even 20,000 permutations only take a minute or so. For this reason, Haley-
Knott Regression is still our preferred option when mapping large omics datasets (where there 
can be tens of thousands of traits), and for producing permutation thresholds. The Haley-Knott 
Regression mapping tool produces a map of the chromosomes on the x-axis and the likelihood 
ratio statistic on the y-axis, although this can be switched to a LOD score as needed. We also 
provide the option of mapping with the widely used R/qtl tool (Broman et al., 2003). R/qtl 
allows five different mapping methods, and therefore can be adapted for specific situations. 
We plan to have the second version of R/qtl (R/qtl2) integrated into GN soon (Broman et al., 
2019). We currently recommend using both Haley-Knott Regression to determine a significance 
threshold and GEMMA to identify the strength and location of the QTL.  
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After choosing the appropriate mapping method, click compute. The next screen will show LRS 
scores, suggestive levels, significant levels, and frequency of LRS peak values. The LRS value, the 
likelihood ratio statistic (http://gn1.genenetwork.org/glossary.html#L), is a value that measures 
the association between the gene variation and the trait of interest (Parker et al., 2017). The 
suggestive and significant LRS threshold values are generated by permutations, as mentioned 
above. The suggestive threshold provides an empirical p-value of 0.63: this level will yield an 
overage of one false positive per genome-scan. These peaks are worth investigating, for 
example, if several linked phenotypes have a suggestive locus at the same position, then the 
position may be significant when the traits are analyzed jointly. The significant threshold is a 
LRS value with a genome wide empirical p-value of 0.05 (Mulligan et al., 2017). For our trait, the 
chromosome containing the highest peak is chromosome 1 (Figure 7). In this case, the peak 
passes the significant LRS value, which means that there is a less than 5% chance that there is 
not linkage between the phenotype and this locus. Therefore, this locus warrants further 
investigation. 
 
We can zoom in to chromosome 1, by clicking on the chromosome number at the top of the 
QTL map. In this view (Figure 8), individual genes can be observed. The multicolored bars at the 
top of the figure are individual genes, and the orange dashes on the bottom are the SNP density 
in that region. The blue line shows the LRS score at that position along the chromosome, and 
the yellow bar indicates the area with the greatest frequency of highest LRS score in a 
bootstrap analysis. For a closer look, the red bar on the top of the figure can be selected to 
zoom in to that region. Similarly, a specific region can be requested by selecting the 
chromosome and start and end positions at the top of the page. With this focused view, we can 
now determine the 1.5 LOD drop interval. The 1.5 LOD drop interval is a commonly used 
threshold to determine the region of the genome with > 95% confidence as containing the 
causal variant (Manichaikul et al., 2006). LOD = LRS/4.61, and therefore the 1.5 LOD drop 
threshold is equal to an LRS drop of 6.915. Our peak LRS is 24.026, and so the extent of the 
locus is determined by the first marker to fall below an LRS value of 17.111. Using this method, 
we can determine that the 1.5 LOD drop interval runs from the beginning of chromosome 1 to 
14.8 Mb.  
 
From the zoomed in view of the 1.5 LOD drop interval (Figure 9), we can investigate genes, 
either by selecting the colored bars on the top of the figure or by scrolling down to the interval 
analyst. This table, shown in Figure 10, displays the genetic information for the 96 genes within 
the mapping interval. Some helpful information within this table is the abbreviation for the 
gene, the location and length of the gene, the number and density of SNPs in the dataset, the 
location on the human chromosome, and a description of the gene. Based on the descriptions 
of genes within the area of interest, the gene Atp6v1h was chosen as the most probable 
candidate for this QTL. This was mainly because of the functions of the gene, specifically the 
transport of innate immune system components and its involvement in signaling pathways, 
(Zhang et al., 2017). Selecting the gene opens a new link to the NCBI gene information page, 
shown in Figure 11. This webpage offers summary information for the gene and its functions. 
This information can assist researchers in discovering genes associated with their phenotypes 
and QTLs.  
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Figure 8: QTL map of chromosome 1, showing a significant QTL between 0 and 25 Mbp, CCL5 expression trait 
(GeneNetwork ID BXD_17850). The red horizontal line towards the top of the figures illustrates the genome-
wide significance threshold, which is p-value ≤ 0.05 genome-wide corrected (significant LRS = 18.43). The 
lower, blue line indicates the significance of the trait at each position along the genomic regions. The lower, 
green and red line shows the negative additive coefficient. Regions where DBA/2J alleles increase trait values 
are shown in green, and regions where the C57BL/6J alleles increase trait values are shown in red, with the 
scale in green on the left. The multi-colored blocks at the top of the figure represent genes, showing where 
they fall in the genomic region, and their length. The density of segregating SNPs in the BXD family are 
shown by the orange seismograph track at the bottom of each map. Adapted from genenetwork.org. 
 

 
Figure 9: Close up of the 1.5 LOD confidence interval on chromosome 1. The blue line is the LRS value for 
individual regions on the chromosome. The yellow bar is the frequency of the highest LRS values within the 
region. The orange hashes on the bottom by the megabase values are to denote areas of high SNP density. 
The peak LRS value for this data set is 24.06. To calculate the LOD value, take the peak LRS value and divide 
by 4.61. For this QTL search, the LOD drop interval is anywhere around the peak that is between 24.06 (LOD 
= 5.21) and 17.111 (LOD = 3.71). This area is found between the beginning of chromosome 1 to about 14.8 
Mb.  
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Figure 10: The first 44 lines of a table containing genes within the 1.5 LOD drop confidence interval for 
our RANTES expression trait (GeneNetwork ID BXD_17850). Information on all genes is given: the 
current official mouse gene symbol (Symbol); the megabase start position of the gene on the mm9 
genome build (Mb Start); the length of the gene in kilobases (Length Kb); the number of SNPs 
between DBA/2J and C57BL/6J within the gene (SNP Count); the density of SNPs within the gene; the 
chromosome on which the human homologue is found, if one exists (Human Chr); the megabase 
position of the human homologue on the hg19 genome build; and the NCBI gene description (Gene 
Description).  
 

 

 
Figure 11: The gene residing within the QTL and its functions as listed within the NCBI database. The 
summary provides information pertaining to the gene, including its relative expression within the 
organism of interest. The pathways mentioned on this webpage can offer insight into the gene’s 
functions. For this investigation, the QTL mapped closely to the Atp6v1h gene.  
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Expression QTL 
Next, we will examine expression quantitative trait loci (eQTLs). These are QTLs for gene 
expression traits, a subset of the molecular phenotypes mentioned above. Much like classical 
phenotypes, expression of transcripts can be influenced by variants within the genome. 
However, because we know the location of the gene, we can split these eQTL into two 
categories, trans- (or distal) or cis- (or local) eQTL.  
 
A trans-eQTL (or distal-eQTL) describes when the expression of a gene is influenced by a locus 
far away from that gene, and therefore indicates that the gene of interest is downstream of 
another gene. For example, a variant in a transcription factor will alter the expression of its 
downstream target, which would show a trans-eQTL at the position of the transcription factor. 
This is useful for researchers to know when creating pathways for biological processes or 
examining genetic interactions. 
  
Cis-eQTL describes when a variant within or close to a gene influences its expression, and this 
can occur when a variant is found in a transcription factor binding site.  Cis-eQTLs are often of 
interest as they show that a gene is under its own regulation, and provide us with the beginning 
of a chain of causality (a variant in that gene causes a change in that genes expression). The 
overlap between a phenotype QTL and a cis-eQTL is strong evidence that the gene is causative 
of the phenotype.  

 
Figure 12: The search parameters on the home page of GeneNetwork for an expression QTL. For this 
search, the same species and group were used. However, expression is measured by mRNA, so the 
Type (12A) and Dataset (12B) are for mRNA. In the Get Any box, we input our gene of interest from 
above (12C).  
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Cis-eQTL 
Let us examine Atp6v1h, our candidate gene from the first section. From the phenotype we 
selected, we hypothesize that expression of Atp6v1h in T cells is altering the expression of 
RANTES (regulated on activation, normal T cell expressed and secreted, also known as CCL5). 
We can next ask the question, does Atp6v1h have a cis-eQTL in T cells? To accomplish this, go to 
the home page of GeneNetwork and adjust the search parameters. To match the phenotype, 
we select the same the Species and Group (Figure 12). For  eQTLs, the Type of selected data will 
be one of the ‘mRNA’ datasets, and specifically ‘T cell (helper) mRNA’ (Figure 12A). There is only 
one dataset within this category (HZI Thelp M430v2 (Feb11) RMA) so we will use this (Figure 
12B). We can then search for Atp6v1h in the Get Any box (Figure 12C).  
 
Just as before, a table with the records matching the search parameters will populate (Figure 
13). We can see that there are 5 results, 4 of which are for probes which target Atp6v1h. Two of 
these (1440549_at and 1415826_at) show significant cis-eQTL, as the location of the maximum 
LRS value (Max LRS) is within a few megabases (Mb) on the same chromosome. This is strong 
evidence that a variant in Atp6v1h alters its expression in T-helper cells. If the peak LRS occurs 
within 10 Mb of the gene of interest, it is considered a cis-eQTL, although this distance will 
depend on the number of recombinations and accuracy of genotyping in a particular 
population. To further investigate this, select the record named 1440549_at. The  
Trait Data and Analysis table will appear on the next screen, Figure 14. 
 

 
It is important to validate the probe used for the assay. Some probes are inefficient, could 
accidentally target other mRNAs, or are disrupted by variants in the population. One way to 
validate the probes used the UCSC BLAT website (Kent, 2002). BLAT is a tool that aligns the 
probes used to the reference genome to identify off-target alignments. To do this, select the 
Verify button on the trait analysis table (Figure 14A). This will open a new window that has the 
probes being verified as well as the alignment scores (Figure 15).    

 
Figure 13: The records table for the eQTL search. 4 of the results are for probes that target the gene of 
interest, Atp6v1h. Of those 4, two show a significant cis-eQTL (1440549_at and 1415826_at).  
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Finally, after validating the probe, check the distribution of the data. As before, if the data is not 
distributed normally, it is essential to normalize before trying to map the location of any QTL. 
The data for this example was distributed normally, normalization not necessary (Figure 16).  
 

 
Figure 14: Trait and data analysis for the 1440549_at probe for Atp6v1h. The window for the Trait Data and 
Analysis page looks very similar to the one for the QTL, however there are more buttons below the resource 
links. An important one to utilize before checking for an eQTL would be the Verify button (14A). This 
redirects to the UCSC BLAT website to verify the integrity of the probes used for the microarray.  
 

 
Figure 15: The UCSB BLAT website is one way to verify the probes used to collect the mRNA data. In this 
case, the probe has 100% identity to the gene of interest when aligned with the reference genome and 
does not have off target effects for the eQTL search.  
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After checking the distribution of the data, choose the mapping method relevant to the dataset 
and select compute. As shown previously, the resulting map will populate with peaks according 
to the LRS score along the genome. In this case, the highest peak is on chromosome 1, shown in 
Figure 17. Note the purple arrow at the bottom of the figure, which shows the position of the 
probe in the genome.  

 
Figure 16: Normalization of eQTL data. The data appears to be normally distributed, so we can proceed with 
the mapping. However, just as before the tools for normalizing the data are found in the Transform and 
Filter Data drop-down menu.  
 
 

 
Figure 17: QTL map for the 1440549_at probe for Atp6v1h, showing association between expression of the 
probe and markers across the whole genome of the BXD mice. The grey line indicates the suggestive LRS 
values, which are those values that have at least an LRS value of 10.81. The red line indicates the significant 
LRS values (p-value 0.05), which are those values that meet an LRS value of 18.43 for this data set. The blue 
line shows the LRS value across the genome. The orange/green line represents the additive effect of the B6 
(green) or D2 (yellow) allele. The yellow bar shows the frequency of the LRS peak location within the 
genome from bootstrap analysis.  
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.23.424047doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.23.424047


   
 

16 
 

By clicking on the chromosome, the map is repopulated to include individual genes and SNPs 
(Figure 18). Again, on the bottom of the map is a purple triangle that marks the placement of 
the probe for Atp6v1h. Upon further expansion of the map, the gene of interest becomes the 
most likely candidate for its own expression, in that expression of the gene maps back to 
location of that gene on the genome (Figure 19). In this case, the expression of Atp6v1h is 
controlled by a cis-eQTL.  

 
Trans-eQTL 
In some cases, a gene can be influenced by the expression of another gene at another locus, 
and whether a gene is cis- or trans- regulated may be dependent upon the tissue tested, or on 
environmental factors. To examine this, let us return to Atp6v1h, but in a different tissue, and 
investigate genes that could be influencing Atp6v1h expression. 

 
Figure 18: Individual genes and SNPs are shown with the LRS scores shown in blue. The purple 
triangle is the location of our gene of interest, Atp6v1h. The blue line is the LRS value for individual 
regions on the chromosome. The yellow bar is the frequency of the highest LRS values across the 
genome. The orange hashes on the bottom by the megabase values are to denote areas of high SNP 
density.  
 

 
Figure 19: The gene that makes the most sense for this LRS peak is the gene of interest, Atp6v1h, 
which is indicated by the purple triangle at the bottom of the figure.  
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To start the search, change the type of data to liver mRNA (Figure 20A), the mRNA dataset 
(Figure 20B), and enter the specific gene in the search row (Figure 20C). Once again this will 
populate a table of records that match the specific parameters of the search. Where we can 
choose a record of interest, for example based on high LRS score and QTL position, and then 
verify the probes and normalize the data as demonstrated before (Figure 21).  
 
As noted previously, the gene Atp6v1h is found on chromosome 1. However, when looking at 
the mRNA dataset from the liver (Wu et al., 2014), the highest LRS score is found on 
chromosome 3. This peak surpasses the suggestive LRS value and just reaches significance, as 
shown in Figure 22.  
 
 

 
 
 

 

 
Figure 20: The search parameters for a trans-eQTL are similar to the ones for a cis-eQTL. For this 
investigation, we are choosing a different tissue (20A). Make sure to select mRNA datasets that 
are applicable (20B), and put the gene of interest in the search area (20C).  
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Figure 22: The purple triangle on chromosome 1 shows the location of the gene, Atp6v1h. 
However, the highest, most significant peak is on chromosome 3. This makes this a good 
candidate for a trans-eQTL.  
 

 
Figure 21: The record with the highest and most significant LRS value in the liver mRNA data set is 
also a good example of a trans-eQTL.  
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As with the last two case studies, clicking on the chromosome will pull up a map of the genes 
and SNPs within that chromosome. It is then possible to expand upon that search and narrow 
the list of genes to only those that are within the QTL confidence interval. Figure 23 shows the 
zoomed in view of chromosome 3 with a table of the genes that are located under the peak in 
Figure 24.  
 
A candidate gene was found based upon the map data and the genes listed within the table. 
This gene can then be searched in the NCBI database for its genetic information and functions. 
This is shown in Figure 25. This suggests that in liver Atp6v1h may be under the control of Eif4e, 
unlike in T helper cells, where it is under its own control. To gain more information, let us look 
at another immune related tissue, the spleen. 

 
Figure 23: Expanding the map allows for ease of access in the investigation for loci. Since this 
peak occurs within a trans-eQTL region, the purple triangle representing the gene’s location is 
missing. The blue line is the LRS value for individual regions on the chromosome. The yellow bar 
is the frequency of the highest LRS values across the genome. The orange hashes on the bottom 
by the megabase values are to denote areas of high SNP density.  
 

 
Figure 24: The Interval Analyst table allows researchers to easily investigate genes within the 
area of interest. This table shows the genes within the area of the LRS peak that could be 
involved in the trans-regulation of the gene, Atp6v1h.  
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Figure 25: The gene that relates the most with the eQTL shown in Figures 19-22 is Eif4e. The genetic 
summary and functions solidify its role as a regulator of immune responses.  
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Return to the GN homepage and select  ‘Spleen mRNA’ in the Type box to get gene expression 
datasets measured in the spleen (Figure 26A). Now, when we look under Dataset, we see that 
there are a number of different datasets which have been collected in spleen, using different 
technologies and at different institutions. Information about each dataset can be found by 
clicking the Info button, for example how the data was analyzed. For the purpose of this 
example, we will select the exon dataset (UTHSC Affy MoGene 1.0 ST Spleen (Dec10) RMA Exon 
Level), as an opportunity to examine expression of specific exons of the gene (Figure 26B). 
Again, we search for Atp6v1h (Figure 26C), and find that this array has 15 probes for Atp6v1h, 
only three of which have significant eQTL, and all three significant eQTL are in cis-regulation 
(Figure 28).  
 
 

 
In this case, rather than selecting any one probe, we will select all three (Figure 27A), and 
perform a correlation analysis (Figures 27B and 28). This shows us that these three probes are 
highly correlated, and we can also see the first three principal components. Principal 
component analysis (PCA) is a technique for data reduction and pattern recognition. The PCA 
generates eigenvectors that capture the majority of the variation in expression between the 
traits (Carter, 2013). An eigenvector for gene expression is often referred to as an eigengene, 
and since these three probes share the same QTL position, this eigengene represents their 
shared regulation by the Chr 1 QTL.  
 
This eigengene can be used as a trait in GN by clicking on it (Figure 28A). Remapping this trait 
shows a much stronger peak LRS than any of the probes individually (LRS = 32.53), 
demonstrating that the eigengene is capturing their shared genetic regulation. This can often 

 
Figure 26: The Select and Search menu in GN. To perform this search, select Spleen mRNA from the 
Type box (26A). Within the Dataset choose the UTHSC Affymetrix exon level data set (26B), and list 
the gene of interest in the Get Any box.  
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help to produce a smaller confidence interval, narrowing the list of potential candidate variants. 
Given that Atp6v1h sits within this interval, this supports Atp6v1h having a cis-eQTL in spleen.  
 

 
 
 
 

 
Figure28: The Correlation Matrix output. Here we can see the PCA traits, also called eigengenes. To further 
investigate and map an eigengene, select the trait record ID (28A). 

 
Figure 27: The search results produce a records table that lists the record ID, the gene symbol for the probe, a 
description of the gene and its location. All of the results are for probes that target the gene of interest, 
Atp6v1h. Of those, only 3 show a significant cis-eQTL (10344642, 10344644, and 10344640). For this, we will 
select all 3 of the probes (A), and perform a correlation matrix (B).  
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Figure 29: The Calculate Correlations tab on the trait page. The method of correlation, the database for 
the trait to be correlated against, how many correlations should be returned, the samples to be used, 
the type of correlation to be used, and the range of correlations to be returned.  

 
Figure 30: Correlation Table for the eigengene selected. Some useful tools for this search are the More  
Options (30A) which will help screen the records table for the most highly correlated genes, the Select 
Trait button (30B) allows users to select specific traits, the Select All button (30C) allows users to select 
all of the traits in the table, and the WebGestalt button (30D) opens the window for the WebGestalt 
search engine.   
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3. Network analyses 
We now have two QTL, and we have picked potentially interesting genes within each, but now 
we want to build up more evidence for which gene in our QTL interval is causal. The first, and 
most obvious way, is to see what genes our trait of interest correlates with, in tissues that we 
expect to be related to the trait. We calculated the Spearman’s correlation between the trait 
BXD_17850 and all probes with expression data in T helper cells (GN319). To do this, go to the 
Calculate Correlations tab (Figure 29), choose the database of interest, and the type of 
correlation (Pearson, Spearman or Biweight midcorrelation). The user may note that Spearman 
correlation was used, rather than Pearson’s. The Spearman correlation is considered more 
powerful when the number of samples is low, which is often the case when comparing between 
datasets in GN (for example, only 7 strains were used in both BXD_17850 and the T-helper cell 
expression dataset).  
 
Given the high correlations seen, we will take only the most highly correlated genes (rho > 0.85 
or < -0.85). To do this, click on the More Options button (Figure 30A), and then change the 
correlation values, and click on the Select Trait button (Figure 30B). This will reduce the list of 
correlated probes to only those that meet the new criteria. We now have a list of genes, the 
expression of which is strongly correlated with our trait. This suggests that these genes are 
involved with our trait.  Next, we want to analyze any enrichment within this gene list. To do 
this, click Select All (Figure 30C), and then WebGestalt (Figure 30D). WebGestalt is a web client 
that allows enrichment analysis, and Entrez gene IDs will be directly imported into WebGestalt 
from GN (Zhang et al., 2005; Wang et al., 2013, 2017; Liao et al., 2019). We used WebGestalt to 
look for enrichment in Gene Ontology Biological Processes (Ashburner et al., 2000; Harris et al., 
2004; Gene Ontology Consortium, 2015; The Gene Ontology Consortium, 2019), KEGG 
pathways (Kanehisa and Goto, 2000; Kanehisa et al., 2012), Panther pathways (Mi et al., 2019a, 
2019b), Reactome pathways (Sidiropoulos et al., 2017; Jassal et al., 2020), and Wikipathway 
pathways (Pico et al., 2008; Slenter et al., 2018) (Figure 31). As many different annotations as 
wanted can be chosen by clicking on the ‘+’ icon (Figure 31). Also note, that the user can 
change the reference set to match the microarray used to gather the data, if known.  
 
Click on the submit button at the bottom of the screen to get the enriched annotations. 
Interestingly, the pathway with the highest enrichment ratio (22.101) was the lectin pathway of  
complement activation (R-MMU-166662), which is a component of the innate immune system 
(Figure 32) (Ali et al., 2012). As we have seen by assessing different tissues, components of this 
lectin pathway of complement activation are present in all immune related tissues of the body, 
but are made mostly in the liver (Holers et al., 2020). The lectin pathway of complement 
activation is present during normal physiology in low levels to monitor for pathogens, present 
during sickness to recruit macrophages to the sick tissues, and present in autoimmune 
functions (Farrar et al., 2016).  
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Figure 31: Different functional pathways on WebGestalt. We used WebGestalt to look for 
enrichment in Gene Ontology Biological Processes, KEGG pathways, Panther pathways, 
Reactome pathways and Wikipathway pathways. 
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Returning to the correlation screen (Figure 30), we can next narrow the number of genes by 
looking which of the correlated genes also have suggestive eQTL mapping to our QTL for 
BXD_17850. To do this, click on the arrow next to the Max LRS Location header, and then look 
for the probes with eQTLs within the trait 1.5 LOD interval (i.e. chr1:0-16.107 Mb, observed 
earlier).  
Three genes have strong cis-eQTL, our previous candidate Atp6v1h, Hjurp and Mrpl15. Carrying 
out enrichment analysis on these 39 probes with a suggestive peak eQTL (LRS > 10) overlapping 
our QTL showed one significantly enriched annotation, negative regulation of androgen 
receptor signaling pathway (GO:0060766; FDR < 0.036; 3 genes, Igf1, Foxp1, Hdac1; Enrichment 
ratio 129.13). Interestingly, CCL5 suppresses androgen receptor signaling, suggesting that the 
genes in this pathway may be downstream of our phenotype (i.e. a variant on Chr 1 alters CCL5 
secretion, which in turn suppresses androgen receptor signaling).  
Next, we carried out the same analysis in a large spleen dataset (GN283). Correlations were 
lower here, with the most significant correlation being rho -0.721. Due to this lower correlation, 
we took a more lenient threshold of (rho > 0.5 or < -0.5). This showed a large number of 
significantly enriched annotations (Figure 33). Although the most significantly enriched 
annotation does not seem relevant (melanosome assembly), the next four do: interleukin-5 
secretion (GO:0072603), regulation of interleukin-5 secretion (GO:2000662), ERKs are 
inactivated (R-MMU-202670) and Signal Transduction of S1P Receptor (WP57). All of these 
annotations are involved in the innate immune system, specifically to regulate chemokine 
(CCL5) and cytokine (IL5) production to increase inflammation, promote macrophage activity, 
and clear pathogens in all the tissues (Trenchevska et al., 2015; Pydi et al., 2019). Again, we 
looked for genes which have a peak LRS mapped to the QTL region, and there were no 
significantly enriched annotations (FDR < 0.05). However, there were eight genes within the 
QTL region which have cis-eQTL, Mrpl15, Scn2a1, St18, Adhfe1, Sntg1, Acvrl1, Snord87 and 
Eya1. Interestingly, we see Mrpl15 again, but not our earlier candidate Atp6v1h. 
 

 
Figure 32: WebGestalt enriched gene set summary. The pathway with the highest enrichment ration 
was the lectin pathway of complement activation. This pathway is one of three complement pathways 
that serve to activate macrophages upon invasion from a host.  
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So, where do we stand? We have good evidence that CCL5 in the plasma after 12 hours of 
fasting (trait BXD_17850) is influenced by a QTL on chr1 0-16.107 Mb, and have identified 
correlated genes which are involved in pathways upstream and downstream of this. We have 8 
potential candidates which share an eQTL location, and the expression of which correlate with 
the phenotype.  

We can next correlate the expression of these 8 genes with the whole phenome database in 
GN, to identify if they may be associated with other immune related phenotypes. To do this, we 
used the 8 probes and did a correlation with the whole phenome, in a similar way to Figure 29, 
but instead choosing BXD published phenotypes. These were then narrowed down to those 
with a rho > |0.5|, and a nominal p-value < 0.05. The total number of correlated phenotypes 
meeting these criteria, and the number of phenotypes which were immune related, were 
counted, so for each probe we could calculate a percentage of correlated phenotypes which are 
immune related (Table 1).  
 

 

Figure 33: The most significantly enriched annotations associated with the correlation from Figure 
30. All of these annotations are involved in the innate immune system, specifically to regulate 
chemokine (CCL5) and cytokine (IL5) production to increase inflammation, promote macrophage 
activity, and clear pathogens in all the tissues.  
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This suggests that Eya1 expression is correlated with the highest number of other immune 
related phenotypes, making it a good candidate. However, four other genes (Adhfe1, St18, 
Acvrl1 and Snord87) also correlate with immune phenotypes. Most notably of those, Acvrl1 and 
St18 which are both involved in cytokine release in the immune system. Acvrl1 signaling is 
responsible for dendritic cell development within the cytotoxic T cell (CD8D+) subtype (Verma 
et al., 2016). This signaling is also related to inflammatory pathways, similarly to RANTES. St18 
is overexpressed in inflammatory autoimmune diseases and leads to promotion of 
autoantibodies and inflammation, but also a decrease in the ERK signaling pathway seen in 
Figure 33 (Radeva et al., 2019).  
At this stage, additional analyses could be done in other populations (e.g. if a QTL for the same 
trait has been detected in another population), or another species (e.g. if there is a GWAS for 
the phenotype in humans; (Houtkooper et al., 2013; Williams and Auwerx, 2015). These cross-
population analyses can often identify a single, top candidate (Ashbrook et al., 2014a, 2015b; 
Jha et al., 2018b, 2018a; Koutnikova et al., 2009). Alternatively, with the handful of candidates 
identified, it is practical to move to ‘wet lab’ assays, for example seeing if over- or under- 
expression of our candidate genes in vitro leads to changes in CCL5 levels.  
 
Conclusion 
GeneNetwork is an excellent tool for exploring complex phenotypes with systems genetics. 
Here we have used GeneNetwork to explore an inflammatory phenotype, and identified a small 
number of plausible candidate genes. A similar workflow can be used for any trait on 
GeneNetwork, or for any phenotype collected by an investigator in a genetically diverse 
population. GeneNetwork can allow users to study relationships between genes, pathways, and 
phenotypes in an easy to use format.  
 
 
 

Table 1: Correlations between spleen gene expression for genes with cis-eQTL in the trait QTL 
interval, and phenotypes related to immune system. Assumption that causative gene will 
correlate with a number of immune phenotypes 

Gene 
symbol 

Probe ID Total phenotypes 
with rho > |0.5| 
and p < 0.05 

Number of 
phenotypes that are 
immune related 

Percent of 
phenotypes 
immune related 

Sntg1 10352980 101 10 9.90 
Adhfe1 10344725 99 14 14.14 
St18 10344679 97 14 14.43 
Scn2a1 10472384 114 10 8.77 
Mrpl15 10352947 99 4 4.04 
Acvrl1 10426999 115 14 12.17 
Snord87 10353034 73 8 10.96 
Eya1 10353192 82 24 29.27 
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