From e7e3117695ef86a28df96cf32bfb66f6da2bc404 Mon Sep 17 00:00:00 2001
From: Zachary Sloan
Date: Fri, 7 Sep 2012 17:08:36 -0500
Subject: Worked with passing form data to correlation page
---
wqflask/base/webqtlFormData.py | 73 +-
wqflask/wqflask/correlation/CorrelationPage.py | 2069 ++++++++++++++++++++
wqflask/wqflask/correlation/__init__.py | 0
wqflask/wqflask/correlation/correlationFunction.py | 923 +++++++++
wqflask/wqflask/show_trait/DataEditingPage.py | 4 +-
wqflask/wqflask/show_trait/show_trait_page.py | 6 +-
.../new/javascript/trait_data_and_analysis.coffee | 21 +-
.../new/javascript/trait_data_and_analysis.js | 17 +-
.../wqflask/templates/trait_data_and_analysis.html | 17 +-
wqflask/wqflask/views.py | 10 +-
10 files changed, 3094 insertions(+), 46 deletions(-)
create mode 100644 wqflask/wqflask/correlation/CorrelationPage.py
create mode 100644 wqflask/wqflask/correlation/__init__.py
create mode 100644 wqflask/wqflask/correlation/correlationFunction.py
(limited to 'wqflask')
diff --git a/wqflask/base/webqtlFormData.py b/wqflask/base/webqtlFormData.py
index 06faacc0..a9e3b7d4 100755
--- a/wqflask/base/webqtlFormData.py
+++ b/wqflask/base/webqtlFormData.py
@@ -25,6 +25,10 @@
# Last updated by GeneNetwork Core Team 2010/10/20
#from mod_python import Cookie
+
+from __future__ import print_function
+from pprint import pformat as pf
+
import string
import os
@@ -47,12 +51,25 @@ class webqtlFormData:
#XZ: Attention! All attribute values must be picklable!
- def __init__(self, start_vars = None, req = None, mod_python_session=None, FieldStorage_formdata=None):
-
- self.__dict__.update(start_vars)
-
- for item in self.attrs:
- setattr(self,item, None)
+ def __init__(self,
+ start_vars = None,
+ req = None,
+ mod_python_session=None,
+ FieldStorage_formdata=None):
+ # Todo: rework this whole thing
+ print("in webqtlFormData start_vars are:", pf(start_vars))
+ for item in webqtlFormData.attrs:
+ self.__dict__[item] = None
+ #self.__dict__.update(start_vars)
+ for item in start_vars:
+ self.__dict__[item] = start_vars[item]
+ print(" Now self.dict is:", pf(self.__dict__))
+ #for item in self.attrs:
+ # if getattr(self, item, None):
+ # print("Setting item %s to None" % (item,))
+ # self.attrs[item] = None
+ # else:
+ # self.attrs[item] = self.attrs[item].strip()
try:
self.remote_ip = req.connection.remote_ip
@@ -84,31 +101,37 @@ class webqtlFormData:
# if value != None:
# setattr(self,item,string.strip(value))
- self.ppolar = ""
- self.mpolar = ""
+ self.ppolar = None
+ self.mpolar = None
+
+ print("[yellow] self.RISet is:", self.RISet)
if self.RISet:
- try:
- # NL, 07/27/2010. ParInfo has been moved from webqtlForm.py to webqtlUtil.py;
- f1, f12, self.mpolar, self.ppolar = webqtlUtil.ParInfo[self.RISet]
- except:
- f1 = f12 = self.mpolar = self.ppolar = None
-
- try:
- self.nperm = int(self.nperm)
- self.nboot = int(self.nboot)
- except:
- self.nperm = 2000 #XZ: Rob asked to change the default value to 2000
- self.nboot = 2000 #XZ: Rob asked to change the default value to 2000
-
+ #try:
+ # # NL, 07/27/2010. ParInfo has been moved from webqtlForm.py to webqtlUtil.py;
+ _f1, _f12, self.mpolar, self.ppolar = webqtlUtil.ParInfo[self.RISet]
+ #except:
+ # f1 = f12 = self.mpolar = self.ppolar = None
+
+
+ def set_number(stringy):
+ return int(stringy) if stringy else 2000 # Rob asked to change the default value to 2000
+
+ self.nperm = set_number(self.nperm)
+ self.nboot = set_number(self.nboot)
+
+
+ #if self.allstrainlist:
+ # self.allstrainlist = map(string.strip, string.split(self.allstrainlist))
+ print("self.allstrainlist is:", self.allstrainlist)
if self.allstrainlist:
- self.allstrainlist = map(string.strip, string.split(self.allstrainlist))
+ self.allstrainlist = self.allstrainlist.split()
+ print("now self.allstrainlist is:", self.allstrainlist)
#self.readGenotype()
#self.readData()
if self.RISet == 'BXD300':
self.RISet = 'BXD'
- else:
- pass
+
def __getitem__(self, key):
return self.__dict__[key]
@@ -133,7 +156,7 @@ class webqtlFormData:
self.RISet = 'BXD'
else:
pass
- assert self.RISet
+ assert self.RISet
#genotype_1 is Dataset Object without parents and f1
#genotype_2 is Dataset Object with parents and f1 (not for intercross)
self.genotype_1 = reaper.Dataset()
diff --git a/wqflask/wqflask/correlation/CorrelationPage.py b/wqflask/wqflask/correlation/CorrelationPage.py
new file mode 100644
index 00000000..9caf6595
--- /dev/null
+++ b/wqflask/wqflask/correlation/CorrelationPage.py
@@ -0,0 +1,2069 @@
+## Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
+#
+# This program is free software: you can redistribute it and/or modify it
+# under the terms of the GNU Affero General Public License
+# as published by the Free Software Foundation, either version 3 of the
+# License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+# See the GNU Affero General Public License for more details.
+#
+# This program is available from Source Forge: at GeneNetwork Project
+# (sourceforge.net/projects/genenetwork/).
+#
+# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
+# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
+#
+#
+#
+# This module is used by GeneNetwork project (www.genenetwork.org)
+#
+# Created by GeneNetwork Core Team 2010/08/10
+#
+# Last updated by NL 2011/02/11
+# Last updated by Christian Fernandez 2012/04/07
+# Refactored correlation calculation into smaller functions in preparation of
+# separating html from existing code
+
+from __future__ import print_function
+
+import string
+from math import *
+import cPickle
+import os
+import time
+#import pyXLWriter as xl
+import pp
+import math
+
+from pprint import pformat as pf
+
+from htmlgen import HTMLgen2 as HT
+import reaper
+
+from base import webqtlConfig
+from utility.THCell import THCell
+from utility.TDCell import TDCell
+from base.webqtlTrait import webqtlTrait
+from base.webqtlDataset import webqtlDataset
+from base.templatePage import templatePage
+from utility import webqtlUtil
+from dbFunction import webqtlDatabaseFunction
+import utility.webqtlUtil #this is for parallel computing only.
+import correlationFunction
+
+import logging
+logging.basicConfig(filename="/tmp/gn_log", level=logging.INFO)
+_log = logging.getLogger("correlation")
+
+METHOD_SAMPLE_PEARSON = "1"
+METHOD_SAMPLE_RANK = "2"
+METHOD_LIT = "3"
+METHOD_TISSUE_PEARSON = "4"
+METHOD_TISSUE_RANK = "5"
+
+TISSUE_METHODS = [METHOD_TISSUE_PEARSON, METHOD_TISSUE_RANK]
+
+TISSUE_MOUSE_DB = 1
+
+class AuthException(Exception): pass
+
+
+class Trait(object):
+ def __init__(self, name, raw_values = None, lit_corr = None, tissue_corr = None, p_tissue = None):
+ self.name = name
+ self.raw_values = raw_values
+ self.lit_corr = lit_corr
+ self.tissue_corr = tissue_corr
+ self.p_tissue = p_tissue
+ self.correlation = 0
+ self.p_value = 0
+
+ @staticmethod
+ def from_csv(line, data_start = 1):
+ name = line[0]
+ numbers = line[data_start:]
+ # _log.info(numbers)
+ numbers = [ float(number) for number in numbers ]
+
+ return Trait(name, raw_values = numbers)
+
+ def calculate_correlation(self, values, method):
+ """Calculate the correlation value and p value according to the method specified"""
+
+ #ZS: This takes the list of values of the trait our selected trait is being correlated against and removes the values of the samples our trait has no value for
+ #There's probably a better way of dealing with this, but I'll have to ask Christian
+ updated_raw_values = []
+ updated_values = []
+ for i in range(len(values)):
+ if values[i] != "None":
+ updated_raw_values.append(self.raw_values[i])
+ updated_values.append(values[i])
+
+ self.raw_values = updated_raw_values
+ values = updated_values
+
+ if method == METHOD_SAMPLE_PEARSON or method == METHOD_LIT or method == METHOD_TISSUE_PEARSON:
+ corr,nOverlap = webqtlUtil.calCorrelation(self.raw_values, values, len(values))
+ else:
+ corr,nOverlap = webqtlUtil.calCorrelationRank(self.raw_values, values, len(values))
+
+ self.correlation = corr
+ self.overlap = nOverlap
+
+ if self.overlap < 3:
+ self.p_value = 1.0
+ else:
+ #ZS - This is probably the wrong way to deal with this. Correlation values of 1.0 definitely exist (the trait correlated against itself), so zero division needs to br prevented.
+ if abs(self.correlation) >= 1.0:
+ self.p_value = 0.0
+ else:
+ ZValue = 0.5*log((1.0+self.correlation)/(1.0-self.correlation))
+ ZValue = ZValue*sqrt(self.overlap-3)
+ self.p_value = 2.0*(1.0 - reaper.normp(abs(ZValue)))
+
+
+
+#XZ, 01/14/2009: This method is for parallel computing only.
+#XZ: It is supposed to be called when "Genetic Correlation, Pearson's r" (method 1)
+#XZ: or "Genetic Correlation, Spearman's rho" (method 2) is selected
+def compute_corr( input_nnCorr, input_trait, input_list, computing_method):
+
+ allcorrelations = []
+
+ for line in input_list:
+ tokens = line.split('","')
+ tokens[-1] = tokens[-1][:-2] #remove the last "
+ tokens[0] = tokens[0][1:] #remove the first "
+
+ traitdataName = tokens[0]
+ database_trait = tokens[1:]
+
+ if computing_method == "1": #XZ: Pearson's r
+ corr,nOverlap = utility.webqtlUtil.calCorrelationText(input_trait, database_trait, input_nnCorr)
+ else: #XZ: Spearman's rho
+ corr,nOverlap = utility.webqtlUtil.calCorrelationRankText(input_trait, database_trait, input_nnCorr)
+ traitinfo = [traitdataName,corr,nOverlap]
+ allcorrelations.append(traitinfo)
+
+ return allcorrelations
+
+def get_correlation_method_key(form_data):
+ #XZ, 09/28/2008: if user select "1", then display 1, 3 and 4.
+ #XZ, 09/28/2008: if user select "2", then display 2, 3 and 5.
+ #XZ, 09/28/2008: if user select "3", then display 1, 3 and 4.
+ #XZ, 09/28/2008: if user select "4", then display 1, 3 and 4.
+ #XZ, 09/28/2008: if user select "5", then display 2, 3 and 5.
+
+ method = form_data.formdata.getvalue("method")
+ if method not in ["1", "2", "3" ,"4", "5"]:
+ return "1"
+
+ return method
+
+
+def get_custom_trait(form_data, cursor):
+ """Pulls the custom trait, if it exists, out of the form data"""
+ trait_name = form_data.formdata.getvalue('fullname')
+
+ if trait_name:
+ trait = webqtlTrait(fullname=trait_name, cursor=cursor)
+ trait.retrieveInfo()
+ return trait
+ else:
+ return None
+
+
+#XZ, 09/18/2008: get the information such as value, variance of the input strain names from the form.
+def get_sample_data(form_data):
+ if form_data.allstrainlist:
+ mdpchoice = form_data.formdata.getvalue('MDPChoice')
+ #XZ, in HTML source code, it is "BXD Only" or "BXH only", and so on
+ if mdpchoice == "1":
+ strainlist = form_data.f1list + form_data.strainlist
+ #XZ, in HTML source code, it is "MDP Only"
+ elif mdpchoice == "2":
+ strainlist = []
+ strainlist2 = form_data.f1list + form_data.strainlist
+ for strain in form_data.allstrainlist:
+ if strain not in strainlist2:
+ strainlist.append(strain)
+ #So called MDP Panel
+ if strainlist:
+ strainlist = form_data.f1list+form_data.parlist+strainlist
+ #XZ, in HTML source code, it is "All Cases"
+ else:
+ strainlist = form_data.allstrainlist
+ #XZ, 09/18/2008: put the trait data into dictionary form_data.allTraitData
+ form_data.readData(form_data.allstrainlist)
+ else:
+ mdpchoice = None
+ strainlist = form_data.strainlist
+ #XZ, 09/18/2008: put the trait data into dictionary form_data.allTraitData
+ form_data.readData()
+
+ return strainlist
+
+
+def get_mdp_choice(form_data):
+ if form_data.allstrainlist:
+ return form_data.formdata.getvalue("MDPChoice")
+ else:
+ return None
+
+
+def get_species(fd, cursor):
+ #XZ, 3/16/2010: variable RISet must be pass by the form
+ RISet = fd.RISet
+ #XZ, 12/12/2008: get species infomation
+ species = webqtlDatabaseFunction.retrieveSpecies(cursor=cursor, RISet=RISet)
+ return species
+
+
+def sortTraitCorrelations(traits, method="1"):
+ if method in TISSUE_METHODS:
+ traits.sort(key=lambda trait: trait.tissue_corr != None and abs(trait.tissue_corr), reverse=True)
+ elif method == METHOD_LIT:
+ traits.sort(key=lambda trait: trait.lit_corr != None and abs(trait.lit_corr), reverse=True)
+ else:
+ traits.sort(key=lambda trait: trait.correlation != None and abs(trait.correlation), reverse=True)
+
+ return traits
+
+
+def auth_user_for_db(db, cursor, target_db_name, privilege, username):
+ """Authorize a user for access to a database if that database is
+ confidential. A db (identified by a record in ProbeSetFreeze) contains a
+ list of authorized users who may access it, as well as its confidentiality
+ level.
+
+ If the current user's privilege level is greater than 'user', ie: root or
+ admin, then they are automatically authed, otherwise, check the
+ AuthorizedUsers field for the presence of their name."""
+
+ if db.type == 'ProbeSet':
+ cursor.execute('SELECT Id, Name, FullName, confidentiality, AuthorisedUsers FROM ProbeSetFreeze WHERE Name = "%s"' % target_db_name)
+ indId, indName, indFullName, confidential, AuthorisedUsers = cursor.fetchall()[0]
+
+ if confidential:
+ authorized = 0
+
+ #for the dataset that confidentiality is 1
+ #1. 'admin' and 'root' can see all of the dataset
+ #2. 'user' can see the dataset that AuthorisedUsers contains his id(stored in the Id field of User table)
+ if webqtlConfig.USERDICT[privilege] > webqtlConfig.USERDICT['user']:
+ authorized = 1
+ else:
+ if username in AuthorisedUsers.split(","):
+ authorized = 1
+
+ if not authorized:
+ raise AuthException("The %s database you selected is not open to the public at this time, please go back and select other database." % indFullName)
+
+
+class CorrelationPage(templatePage):
+
+ corrMinInformative = 4
+
+ PAGE_HEADING = "Correlation Table"
+ CORRELATION_METHODS = {"1" : "Genetic Correlation (Pearson's r)",
+ "2" : "Genetic Correlation (Spearman's rho)",
+ "3" : "SGO Literature Correlation",
+ "4" : "Tissue Correlation (Pearson's r)",
+ "5" : "Tissue Correlation (Spearman's rho)"}
+
+ RANK_ORDERS = {"1": 0, "2": 1, "3": 0, "4": 0, "5": 1}
+
+
+ def error(self, message, error="Error", heading = None):
+ heading = heading or self.PAGE_HEADING
+ return templatePage.error(heading = heading, detail = [message], error=error)
+
+ def __init__(self, fd):
+ print("in CorrelationPage __init__ fd is:", pf(fd.__dict__))
+ # Call the superclass constructor
+ templatePage.__init__(self, fd)
+ print("in CorrelationPage __init__ now fd is:", pf(fd.__dict__))
+ # Connect to the database
+ if not self.openMysql():
+ return
+
+ # Read the genotype from a file
+ if not fd.genotype:
+ fd.readGenotype()
+
+ sample_list = get_sample_data(fd)
+ mdp_choice = get_mdp_choice(fd) # No idea what this is yet
+ self.species = get_species(fd, self.cursor)
+
+ #XZ, 09/18/2008: get all information about the user selected database.
+ target_db_name = fd.formdata.getvalue('database')
+ self.target_db_name = target_db_name
+
+ try:
+ self.db = webqtlDataset(target_db_name, self.cursor)
+ except:
+ detail = ["The database you just requested has not been established yet."]
+ self.error(detail)
+ return
+
+ # Auth if needed
+ try:
+ auth_user_for_db(self.db, self.cursor, target_db_name, self.privilege, self.userName)
+ except AuthException, e:
+ detail = [e.message]
+ return self.error(detail)
+
+ #XZ, 09/18/2008: filter out the strains that have no value.
+ self.sample_names, vals, vars, N = fd.informativeStrains(sample_list)
+
+ #CF - If less than a minimum number of strains/cases in common, don't calculate anything
+ if len(self.sample_names) < self.corrMinInformative:
+ detail = ['Fewer than %d strain data were entered for %s data set. No calculation of correlation has been attempted.' % (self.corrMinInformative, fd.RISet)]
+ self.error(heading=PAGE_HEADING,detail=detail)
+
+
+ self.method = get_correlation_method_key(fd)
+ correlation_method = self.CORRELATION_METHODS[self.method]
+ rankOrder = self.RANK_ORDERS[self.method]
+
+ # CF - Number of results returned
+ self.returnNumber = int(fd.formdata.getvalue('criteria'))
+
+ self.record_count = 0
+
+ myTrait = get_custom_trait(fd, self.cursor)
+
+
+ # We will not get Literature Correlations if there is no GeneId because there is nothing to look against
+ self.gene_id = int(fd.formdata.getvalue('GeneId') or 0)
+
+ # We will not get Tissue Correlations if there is no gene symbol because there is nothing to look against
+ self.trait_symbol = myTrait.symbol
+
+
+ #XZ, 12/12/2008: if the species is rat or human, translate the geneid to mouse geneid
+ self.input_trait_mouse_gene_id = self.translateToMouseGeneID(self.species, self.gene_id)
+
+ #XZ: As of Nov/13/2010, this dataset is 'UTHSC Illumina V6.2 RankInv B6 D2 average CNS GI average (May 08)'
+ self.tissue_probeset_freeze_id = 1
+
+ traitList = self.correlate(vals)
+
+ _log.info("Done doing correlation calculation")
+
+############################################################################################################################################
+
+ TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee')
+
+ mainfmName = webqtlUtil.genRandStr("fm_")
+ form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name= mainfmName, submit=HT.Input(type='hidden'))
+ hddn = {'FormID': 'showDatabase',
+ 'ProbeSetID': '_',
+ 'database': self.target_db_name,
+ 'databaseFull': self.db.fullname,
+ 'CellID': '_',
+ 'RISet': fd.RISet,
+ 'identification': fd.identification}
+
+ if myTrait:
+ hddn['fullname']=fd.formdata.getvalue('fullname')
+ if mdp_choice:
+ hddn['MDPChoice']=mdp_choice
+
+
+ #XZ, 09/18/2008: pass the trait data to next page by hidden parameters.
+ webqtlUtil.exportData(hddn, fd.allTraitData)
+
+ if fd.incparentsf1:
+ hddn['incparentsf1']='ON'
+
+ if fd.allstrainlist:
+ hddn['allstrainlist'] = string.join(fd.allstrainlist, ' ')
+
+
+ for key in hddn.keys():
+ form.append(HT.Input(name=key, value=hddn[key], type='hidden'))
+
+ #XZ, 11/21/2008: add two parameters to form
+ form.append(HT.Input(name="X_geneSymbol", value="", type='hidden'))
+ form.append(HT.Input(name="Y_geneSymbol", value="", type='hidden'))
+
+ #XZ, 3/11/2010: add one parameter to record if the method is rank order.
+ form.append(HT.Input(name="rankOrder", value="%s" % rankOrder, type='hidden'))
+
+ form.append(HT.Input(name="TissueProbeSetFreezeId", value="%s" % self.tissue_probeset_freeze_id, type='hidden'))
+
+ ####################################
+ # generate the info on top of page #
+ ####################################
+
+ info = self.getTopInfo(myTrait=myTrait, method=self.method, db=self.db, target_db_name=self.target_db_name, returnNumber=self.returnNumber, methodDict=self.CORRELATION_METHODS, totalTraits=traitList, identification=fd.identification )
+
+ ##############
+ # Excel file #
+ ##############
+ filename= webqtlUtil.genRandStr("Corr_")
+ xlsUrl = HT.Input(type='button', value = 'Download Table', onClick= "location.href='/tmp/%s.xls'" % filename, Class='button')
+ # Create a new Excel workbook
+ workbook = xl.Writer('%s.xls' % (webqtlConfig.TMPDIR+filename))
+ headingStyle = workbook.add_format(align = 'center', bold = 1, border = 1, size=13, fg_color = 0x1E, color="white")
+
+ #XZ, 3/18/2010: pay attention to the line number of header in this file. As of today, there are 7 lines.
+ worksheet = self.createExcelFileWithTitleAndFooter(workbook=workbook, identification=fd.identification, db=self.db, returnNumber=self.returnNumber)
+
+ newrow = 7
+
+
+#####################################################################
+
+
+ #Select All, Deselect All, Invert Selection, Add to Collection
+ mintmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'showIntMap');" % mainfmName)
+ mintmap_img = HT.Image("/images/multiple_interval_mapping1_final.jpg", name='mintmap', alt="Multiple Interval Mapping", title="Multiple Interval Mapping", style="border:none;")
+ mintmap.append(mintmap_img)
+ mcorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'compCorr');" % mainfmName)
+ mcorr_img = HT.Image("/images/compare_correlates2_final.jpg", alt="Compare Correlates", title="Compare Correlates", style="border:none;")
+ mcorr.append(mcorr_img)
+ cormatrix = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'corMatrix');" % mainfmName)
+ cormatrix_img = HT.Image("/images/correlation_matrix1_final.jpg", alt="Correlation Matrix and PCA", title="Correlation Matrix and PCA", style="border:none;")
+ cormatrix.append(cormatrix_img)
+ networkGraph = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'networkGraph');" % mainfmName)
+ networkGraph_img = HT.Image("/images/network_graph1_final.jpg", name='mintmap', alt="Network Graphs", title="Network Graphs", style="border:none;")
+ networkGraph.append(networkGraph_img)
+ heatmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'heatmap');" % mainfmName)
+ heatmap_img = HT.Image("/images/heatmap2_final.jpg", name='mintmap', alt="QTL Heat Map and Clustering", title="QTL Heatmap and Clustering", style="border:none;")
+ heatmap.append(heatmap_img)
+ partialCorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'partialCorrInput');" % mainfmName)
+ partialCorr_img = HT.Image("/images/partial_correlation_final.jpg", name='partialCorr', alt="Partial Correlation", title="Partial Correlation", style="border:none;")
+ partialCorr.append(partialCorr_img)
+ addselect = HT.Href(url="#redirect", onClick="addRmvSelection('%s', document.getElementsByName('%s')[0], 'addToSelection');" % (fd.RISet, mainfmName))
+ addselect_img = HT.Image("/images/add_collection1_final.jpg", name="addselect", alt="Add To Collection", title="Add To Collection", style="border:none;")
+ addselect.append(addselect_img)
+ selectall = HT.Href(url="#redirect", onClick="checkAll(document.getElementsByName('%s')[0]);" % mainfmName)
+ selectall_img = HT.Image("/images/select_all2_final.jpg", name="selectall", alt="Select All", title="Select All", style="border:none;")
+ selectall.append(selectall_img)
+ selectinvert = HT.Href(url="#redirect", onClick = "checkInvert(document.getElementsByName('%s')[0]);" % mainfmName)
+ selectinvert_img = HT.Image("/images/invert_selection2_final.jpg", name="selectinvert", alt="Invert Selection", title="Invert Selection", style="border:none;")
+ selectinvert.append(selectinvert_img)
+ reset = HT.Href(url="#redirect", onClick="checkNone(document.getElementsByName('%s')[0]); return false;" % mainfmName)
+ reset_img = HT.Image("/images/select_none2_final.jpg", alt="Select None", title="Select None", style="border:none;")
+ reset.append(reset_img)
+ selecttraits = HT.Input(type='button' ,name='selecttraits',value='Select Traits', onClick="checkTraits(this.form);",Class="button")
+ selectgt = HT.Input(type='text' ,name='selectgt',value='-1.0', size=6,maxlength=10,onChange="checkNumeric(this,1.0,'-1.0','gthan','greater than filed')")
+ selectlt = HT.Input(type='text' ,name='selectlt',value='1.0', size=6,maxlength=10,onChange="checkNumeric(this,-1.0,'1.0','lthan','less than field')")
+ selectandor = HT.Select(name='selectandor')
+ selectandor.append(('AND','and'))
+ selectandor.append(('OR','or'))
+ selectandor.selected.append('AND')
+
+
+ #External analysis tools
+ GCATButton = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GCAT');" % mainfmName)
+ GCATButton_img = HT.Image("/images/GCAT_logo_final.jpg", name="GCAT", alt="GCAT", title="GCAT", style="border:none")
+ GCATButton.append(GCATButton_img)
+
+ ODE = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'ODE');" % mainfmName)
+ ODE_img = HT.Image("/images/ODE_logo_final.jpg", name="ode", alt="ODE", title="ODE", style="border:none")
+ ODE.append(ODE_img)
+
+ '''
+ #XZ, 07/07/2010: I comment out this block of code.
+ WebGestaltScript = HT.Script(language="Javascript")
+ WebGestaltScript.append("""
+setTimeout('openWebGestalt()', 2000);
+function openWebGestalt(){
+var thisForm = document['WebGestalt'];
+makeWebGestaltTree(thisForm, '%s', %d, 'edag_only.php');
+}
+ """ % (mainfmName, len(traitList)))
+ '''
+
+ self.cursor.execute('SELECT GeneChip.GO_tree_value FROM GeneChip, ProbeFreeze, ProbeSetFreeze WHERE GeneChip.Id = ProbeFreeze.ChipId and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Name = "%s"' % self.db.name)
+ result = self.cursor.fetchone()
+
+ if result:
+ GO_tree_value = result[0]
+
+ if GO_tree_value:
+
+ WebGestalt = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GOTree');" % mainfmName)
+ WebGestalt_img = HT.Image("/images/webgestalt_icon_final.jpg", name="webgestalt", alt="Gene Set Analysis Toolkit", title="Gene Set Analysis Toolkit", style="border:none")
+ WebGestalt.append(WebGestalt_img)
+
+ hddnWebGestalt = {
+ 'id_list':'',
+ 'correlation':'',
+ 'id_value':'',
+ 'llid_list':'',
+ 'id_type':GO_tree_value,
+ 'idtype':'',
+ 'species':'',
+ 'list':'',
+ 'client':''}
+
+ hddnWebGestalt['ref_type'] = hddnWebGestalt['id_type']
+ hddnWebGestalt['cat_type'] = 'GO'
+ hddnWebGestalt['significancelevel'] = 'Top10'
+
+ if self.species == 'rat':
+ hddnWebGestalt['org'] = 'Rattus norvegicus'
+ elif self.species == 'human':
+ hddnWebGestalt['org'] = 'Homo sapiens'
+ elif self.species == 'mouse':
+ hddnWebGestalt['org'] = 'Mus musculus'
+ else:
+ hddnWebGestalt['org'] = ''
+
+ for key in hddnWebGestalt.keys():
+ form.append(HT.Input(name=key, value=hddnWebGestalt[key], type='hidden'))
+
+
+ #Create tables with options, etc
+
+ pageTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%", border=0, align="Left")
+
+ containerTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="90%",border=0, align="Left")
+
+
+ if not GO_tree_value:
+ optionsTable = HT.TableLite(cellSpacing=2, cellPadding=0,width="480", height="80", border=0, align="Left")
+ optionsTable.append(HT.TR(HT.TD(selectall), HT.TD(reset), HT.TD(selectinvert), HT.TD(addselect), HT.TD(GCATButton), HT.TD(ODE), align="left"))
+ optionsTable.append(HT.TR(HT.TD(" "*1,"Select"), HT.TD("Deselect"), HT.TD(" "*1,"Invert"), HT.TD(" "*3,"Add"), HT.TD("Gene Set"), HT.TD(" "*2,"GCAT")))
+ else:
+ optionsTable = HT.TableLite(cellSpacing=2, cellPadding=0,width="560", height="80", border=0, align="Left")
+ optionsTable.append(HT.TR(HT.TD(selectall), HT.TD(reset), HT.TD(selectinvert), HT.TD(addselect), HT.TD(GCATButton), HT.TD(ODE), HT.TD(WebGestalt), align="left"))
+ optionsTable.append(HT.TR(HT.TD(" "*1,"Select"), HT.TD("Deselect"), HT.TD(" "*1,"Invert"), HT.TD(" "*3,"Add"), HT.TD("Gene Set"), HT.TD(" "*2,"GCAT"), HT.TD(" "*3, "ODE")))
+ containerTable.append(HT.TR(HT.TD(optionsTable)))
+
+ functionTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="480",height="80", border=0, align="Left")
+ functionRow = HT.TR(HT.TD(networkGraph, width="16.7%"), HT.TD(cormatrix, width="16.7%"), HT.TD(partialCorr, width="16.7%"), HT.TD(mcorr, width="16.7%"), HT.TD(mintmap, width="16.7%"), HT.TD(heatmap), align="left")
+ labelRow = HT.TR(HT.TD(" "*1,HT.Text("Graph")), HT.TD(" "*1,HT.Text("Matrix")), HT.TD(" "*1,HT.Text("Partial")), HT.TD(HT.Text("Compare")), HT.TD(HT.Text("QTL Map")), HT.TD(HT.Text(text="Heat Map")))
+ functionTable.append(functionRow, labelRow)
+ containerTable.append(HT.TR(HT.TD(functionTable), HT.BR()))
+
+ #more_options = HT.Image("/images/more_options1_final.jpg", name='more_options', alt="Expand Options", title="Expand Options", style="border:none;", Class="toggleShowHide")
+
+ #containerTable.append(HT.TR(HT.TD(more_options, HT.BR(), HT.BR())))
+
+ moreOptions = HT.Input(type='button',name='options',value='More Options', onClick="",Class="toggle")
+ fewerOptions = HT.Input(type='button',name='options',value='Fewer Options', onClick="",Class="toggle")
+
+ """
+ if (fd.formdata.getvalue('showHideOptions') == 'less'):
+ containerTable.append(HT.TR(HT.TD(" "), height="10"), HT.TR(HT.TD(HT.Div(fewerOptions, Class="toggleShowHide"))))
+ containerTable.append(HT.TR(HT.TD(" ")))
+ else:
+ containerTable.append(HT.TR(HT.TD(" "), height="10"), HT.TR(HT.TD(HT.Div(moreOptions, Class="toggleShowHide"))))
+ containerTable.append(HT.TR(HT.TD(" ")))
+ """
+
+ containerTable.append(HT.TR(HT.TD(HT.Span(selecttraits,' with r > ',selectgt, ' ',selectandor, ' r < ',selectlt,Class="bd1 cbddf fs11")), style="display:none;", Class="extra_options"))
+
+ chrMenu = HT.Input(type='hidden',name='chromosomes',value='all')
+
+ corrHeading = HT.Paragraph('Correlation Table', Class="title")
+
+
+ tblobj = {}
+
+ if self.db.type=="Geno":
+ containerTable.append(HT.TR(HT.TD(xlsUrl, height=60)))
+
+ pageTable.append(HT.TR(HT.TD(containerTable)))
+
+ tblobj['header'], worksheet = self.getTableHeaderForGeno( method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
+ newrow += 1
+
+ sortby = self.getSortByValue( calculationMethod = self.method )
+
+ corrScript = HT.Script(language="Javascript")
+ corrScript.append("var corrArray = new Array();")
+
+ tblobj['body'], worksheet, corrScript = self.getTableBodyForGeno(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript)
+
+ workbook.close()
+ objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
+ cPickle.dump(tblobj, objfile)
+ objfile.close()
+
+ div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable")
+
+ pageTable.append(HT.TR(HT.TD(div)))
+
+ form.append(HT.Input(name='ShowStrains',type='hidden', value =1),
+ HT.Input(name='ShowLine',type='hidden', value =1),
+ HT.P(), HT.P(), pageTable)
+ TD_LR.append(corrHeading, info, form, HT.P())
+
+ self.dict['body'] = str(TD_LR)
+ self.dict['js1'] = ''
+ self.dict['title'] = 'Correlation'
+
+ elif self.db.type=="Publish":
+
+ containerTable.append(HT.TR(HT.TD(xlsUrl, height=40)))
+
+ pageTable.append(HT.TR(HT.TD(containerTable)))
+
+ tblobj['header'], worksheet = self.getTableHeaderForPublish(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
+ newrow += 1
+
+ sortby = self.getSortByValue( calculationMethod = self.method )
+
+ corrScript = HT.Script(language="Javascript")
+ corrScript.append("var corrArray = new Array();")
+
+ tblobj['body'], worksheet, corrScript = self.getTableBodyForPublish(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript, species=self.species)
+
+ workbook.close()
+
+ objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
+ cPickle.dump(tblobj, objfile)
+ objfile.close()
+ # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py;
+ div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable")
+
+ pageTable.append(HT.TR(HT.TD(div)))
+
+ form.append(
+ HT.Input(name='ShowStrains',type='hidden', value =1),
+ HT.Input(name='ShowLine',type='hidden', value =1),
+ HT.P(), pageTable)
+ TD_LR.append(corrHeading, info, form, HT.P())
+
+ self.dict['body'] = str(TD_LR)
+ self.dict['js1'] = ''
+ self.dict['title'] = 'Correlation'
+
+
+ elif self.db.type=="ProbeSet":
+ tblobj['header'], worksheet = self.getTableHeaderForProbeSet(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle)
+ newrow += 1
+
+ sortby = self.getSortByValue( calculationMethod = self.method )
+
+ corrScript = HT.Script(language="Javascript")
+ corrScript.append("var corrArray = new Array();")
+
+ tblobj['body'], worksheet, corrScript = self.getTableBodyForProbeSet(traitList=traitList, primaryTrait=myTrait, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript, species=self.species)
+
+ workbook.close()
+ objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb')
+ cPickle.dump(tblobj, objfile)
+ objfile.close()
+
+ #XZ: here is the table of traits
+ div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1", hiddenColumns=["Gene ID","Homologene ID"]), corrScript, Id="sortable")
+
+
+ #XZ, 01/12/2009: create database menu for 'Add Correlation'
+ self.cursor.execute("""
+ select
+ ProbeSetFreeze.FullName, ProbeSetFreeze.Id, Tissue.name
+ from
+ ProbeSetFreeze, ProbeFreeze, ProbeSetFreeze as ps2, ProbeFreeze as p2, Tissue
+ where
+ ps2.Id = %d
+ and ps2.ProbeFreezeId = p2.Id
+ and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id
+ and (ProbeFreeze.InbredSetId = p2.InbredSetId or (ProbeFreeze.InbredSetId in (1, 3) and p2.InbredSetId in (1, 3)))
+ and p2.ChipId = ProbeFreeze.ChipId
+ and ps2.Id != ProbeSetFreeze.Id
+ and ProbeFreeze.TissueId = Tissue.Id
+ and ProbeSetFreeze.public > %d
+ order by
+ ProbeFreeze.TissueId, ProbeSetFreeze.CreateTime desc
+ """ % (self.db.id, webqtlConfig.PUBLICTHRESH))
+
+ results = self.cursor.fetchall()
+ dbCustomizer = HT.Select(results, name = "customizer")
+ databaseMenuSub = preTissue = ""
+ for item in results:
+ TName, TId, TTissue = item
+ if TTissue != preTissue:
+ if databaseMenuSub:
+ dbCustomizer.append(databaseMenuSub)
+ databaseMenuSub = HT.Optgroup(label = '%s mRNA ------' % TTissue)
+ preTissue = TTissue
+
+ databaseMenuSub.append(item[:2])
+ if databaseMenuSub:
+ dbCustomizer.append(databaseMenuSub)
+
+ #updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
+ #variables: filename, strainIds and vals are required by getquerystring function
+ strainIds=self.getStrainIds(species=self.species, strains=self.sample_names)
+ var1 = HT.Input(name="filename", value=filename, type='hidden')
+ var2 = HT.Input(name="strainIds", value=strainIds, type='hidden')
+ var3 = HT.Input(name="vals", value=vals, type='hidden')
+ customizerButton = HT.Input(type="button", Class="button", value="Add Correlation", onClick = "xmlhttpPost('%smain.py?FormID=AJAX_table', 'sortable', (getquerystring(this.form)))" % webqtlConfig.CGIDIR)
+
+ containerTable.append(HT.TR(HT.TD(HT.Span(var1,var2,var3,customizerButton, "with", dbCustomizer, Class="bd1 cbddf fs11"), HT.BR(), HT.BR()), style="display:none;", Class="extra_options"))
+
+ containerTable.append(HT.TR(HT.TD(xlsUrl, HT.BR(), HT.BR())))
+
+ pageTable.append(HT.TR(HT.TD(containerTable)))
+
+ pageTable.append(HT.TR(HT.TD(div)))
+
+ if self.species == 'human':
+ heatmap = ""
+
+ form.append(HT.Input(name='ShowStrains',type='hidden', value =1),
+ HT.Input(name='ShowLine',type='hidden', value =1),
+ info, HT.BR(), pageTable, HT.BR())
+
+ TD_LR.append(corrHeading, form, HT.P())
+
+
+ self.dict['body'] = str(TD_LR)
+ self.dict['title'] = 'Correlation'
+ # updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js
+ self.dict['js1'] = ''
+ self.dict['js2'] = 'onLoad="pageOffset()"'
+ self.dict['layer'] = self.generateWarningLayer()
+ else:
+ self.dict['body'] = ""
+
+
+#############################
+# #
+# CorrelationPage Functions #
+# #
+#############################
+
+
+ def getSortByValue(self, calculationMethod):
+
+ if calculationMethod == "1":
+ sortby = ("Sample p(r)", "up")
+ elif calculationMethod == "2":
+ sortby = ("Sample p(rho)", "up")
+ elif calculationMethod == "3": #XZ: literature correlation
+ sortby = ("Lit Corr","down")
+ elif calculationMethod == "4": #XZ: tissue correlation
+ sortby = ("Tissue r", "down")
+ elif calculationMethod == "5":
+ sortby = ("Tissue rho", "down")
+
+ return sortby
+
+
+
+ def generateWarningLayer(self):
+
+ layerString = """
+
+
+
+
+
+
+
+
+ Sort Table
+ |
+
+
+
+
+Resorting this table
+
+ |
+
+
+ |
+
+
+
+
+
+ """
+
+ return layerString
+
+
+ #XZ, 01/07/2009: In HTML code, the variable 'database' corresponds to the column 'Name' in database table.
+ def getFileName(self, target_db_name): ### dcrowell August 2008
+ """Returns the name of the reference database file with which correlations are calculated.
+ Takes argument cursor which is a cursor object of any instance of a subclass of templatePage
+ Used by correlationPage"""
+
+ query = 'SELECT Id, FullName FROM ProbeSetFreeze WHERE Name = "%s"' % target_db_name
+ self.cursor.execute(query)
+ result = self.cursor.fetchone()
+ Id = result[0]
+ FullName = result[1]
+ FullName = FullName.replace(' ','_')
+ FullName = FullName.replace('/','_')
+
+ FileName = 'ProbeSetFreezeId_' + str(Id) + '_FullName_' + FullName + '.txt'
+
+ return FileName
+
+
+ #XZ, 01/29/2009: I modified this function.
+ #XZ: Note that the type of StrainIds must be number, not string.
+ def getStrainIds(self, species=None, strains=[]):
+ StrainIds = []
+ for item in strains:
+ self.cursor.execute('''SELECT Strain.Id FROM Strain, Species WHERE
+ Strain.Name="%s" and Strain.SpeciesId=Species.Id and Species.name = "%s" ''' % (item, species))
+ Id = self.cursor.fetchone()[0]
+ StrainIds.append(Id)
+
+ return StrainIds
+
+
+ #XZ, 12/12/2008: if the species is rat or human, translate the geneid to mouse geneid
+ #XZ, 12/12/2008: if the input geneid is 'None', return 0
+ #XZ, 12/12/2008: if the input geneid has no corresponding mouse geneid, return 0
+ def translateToMouseGeneID (self, species, geneid):
+ mouse_geneid = 0;
+
+ #if input geneid is None, return 0.
+ if not geneid:
+ return mouse_geneid
+
+ if species == 'mouse':
+ mouse_geneid = geneid
+ elif species == 'rat':
+ self.cursor.execute( "SELECT mouse FROM GeneIDXRef WHERE rat=%d" % int(geneid) )
+ record = self.cursor.fetchone()
+ if record:
+ mouse_geneid = record[0]
+ elif species == 'human':
+ self.cursor.execute( "SELECT mouse FROM GeneIDXRef WHERE human=%d" % int(geneid) )
+ record = self.cursor.fetchone()
+ if record:
+ mouse_geneid = record[0]
+
+ return mouse_geneid
+
+
+ #XZ, 12/16/2008: the input geneid is of mouse type
+ def checkForLitInfo(self,geneId):
+ q = 'SELECT 1 FROM LCorrRamin3 WHERE GeneId1=%s LIMIT 1' % geneId
+ self.cursor.execute(q)
+ try:
+ x = self.cursor.fetchone()
+ if x: return True
+ else: raise
+ except: return False
+
+
+ #XZ, 12/16/2008: the input geneid is of mouse type
+ def checkSymbolForTissueCorr(self, tissueProbeSetFreezeId=0, symbol=""):
+ q = "SELECT 1 FROM TissueProbeSetXRef WHERE TissueProbeSetFreezeId=%s and Symbol='%s' LIMIT 1" % (tissueProbeSetFreezeId,symbol)
+ self.cursor.execute(q)
+ try:
+ x = self.cursor.fetchone()
+ if x: return True
+ else: raise
+ except: return False
+
+
+
+ def fetchAllDatabaseData(self, species, GeneId, GeneSymbol, strains, db, method, returnNumber, tissueProbeSetFreezeId):
+
+ StrainIds = []
+ for item in strains:
+ self.cursor.execute('''SELECT Strain.Id FROM Strain, Species WHERE Strain.Name="%s" and Strain.SpeciesId=Species.Id and Species.name = "%s" ''' % (item, species))
+ Id = self.cursor.fetchone()[0]
+ StrainIds.append('%d' % Id)
+
+ # break it into smaller chunks so we don't overload the MySql server
+ nnn = len(StrainIds) / 25
+ if len(StrainIds) % 25:
+ nnn += 1
+ oridata = []
+
+ #XZ, 09/24/2008: build one temporary table that only contains the records associated with the input GeneId
+ tempTable = None
+ if GeneId and db.type == "ProbeSet":
+ if method == "3":
+ tempTable = self.getTempLiteratureTable(species=species, input_species_geneid=GeneId, returnNumber=returnNumber)
+
+ if method == "4" or method == "5":
+ tempTable = self.getTempTissueCorrTable(primaryTraitSymbol=GeneSymbol, TissueProbeSetFreezeId=TISSUE_MOUSE_DB, method=method, returnNumber=returnNumber)
+
+ for step in range(nnn):
+ temp = []
+ StrainIdstep = StrainIds[step*25:min(len(StrainIds), (step+1)*25)]
+ for item in StrainIdstep: temp.append('T%s.value' % item)
+
+ if db.type == "Publish":
+ query = "SELECT PublishXRef.Id, "
+ dataStartPos = 1
+ query += string.join(temp,', ')
+ query += ' FROM (PublishXRef, PublishFreeze)'
+ #XZ, 03/04/2009: Xiaodong changed Data to PublishData
+ for item in StrainIdstep:
+ query += 'left join PublishData as T%s on T%s.Id = PublishXRef.DataId and T%s.StrainId=%s\n' %(item,item,item,item)
+ query += "WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId and PublishFreeze.Name = '%s'" % (db.name, )
+ #XZ, 09/20/2008: extract literature correlation value together with gene expression values.
+ #XZ, 09/20/2008: notice the difference between the code in next block.
+ elif tempTable:
+ # we can get a little performance out of selecting our LitCorr here
+ # but also we need to do this because we are unconcerned with probes that have no geneId associated with them
+ # as we would not have litCorr data.
+
+ if method == "3":
+ query = "SELECT %s.Name, %s.value," % (db.type,tempTable)
+ dataStartPos = 2
+ if method == "4" or method == "5":
+ query = "SELECT %s.Name, %s.Correlation, %s.PValue," % (db.type,tempTable, tempTable)
+ dataStartPos = 3
+
+ query += string.join(temp,', ')
+ query += ' FROM (%s, %sXRef, %sFreeze)' % (db.type, db.type, db.type)
+ if method == "3":
+ query += ' LEFT JOIN %s ON %s.GeneId2=ProbeSet.GeneId ' % (tempTable,tempTable)
+ if method == "4" or method == "5":
+ query += ' LEFT JOIN %s ON %s.Symbol=ProbeSet.Symbol ' % (tempTable,tempTable)
+ #XZ, 03/04/2009: Xiaodong changed Data to %sData and changed parameters from %(item,item, db.type,item,item) to %(db.type, item,item, db.type,item,item)
+ for item in StrainIdstep:
+ query += 'left join %sData as T%s on T%s.Id = %sXRef.DataId and T%s.StrainId=%s\n' %(db.type, item,item, db.type,item,item)
+
+ if method == "3":
+ query += "WHERE ProbeSet.GeneId IS NOT NULL AND %s.value IS NOT NULL AND %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (tempTable,db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type)
+ if method == "4" or method == "5":
+ query += "WHERE ProbeSet.Symbol IS NOT NULL AND %s.Correlation IS NOT NULL AND %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (tempTable,db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type)
+ else:
+ query = "SELECT %s.Name," % db.type
+ dataStartPos = 1
+ query += string.join(temp,', ')
+ query += ' FROM (%s, %sXRef, %sFreeze)' % (db.type, db.type, db.type)
+ #XZ, 03/04/2009: Xiaodong changed Data to %sData and changed parameters from %(item,item, db.type,item,item) to %(db.type, item,item, db.type,item,item)
+ for item in StrainIdstep:
+ query += 'left join %sData as T%s on T%s.Id = %sXRef.DataId and T%s.StrainId=%s\n' %(db.type, item,item, db.type,item,item)
+ query += "WHERE %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type)
+
+ self.cursor.execute(query)
+ results = self.cursor.fetchall()
+ oridata.append(results)
+
+ datasize = len(oridata[0])
+ traits = []
+ # put all of the separate data together into a huge list of lists
+ for j in range(datasize):
+ traitdata = list(oridata[0][j])
+ for i in range(1,nnn):
+ traitdata += list(oridata[i][j][dataStartPos:])
+
+ trait = Trait(traitdata[0], traitdata[dataStartPos:])
+
+ if method == METHOD_LIT:
+ trait.lit_corr = traitdata[1]
+
+ if method in TISSUE_METHODS:
+ trait.tissue_corr = traitdata[1]
+ trait.p_tissue = traitdata[2]
+
+ traits.append(trait)
+
+ if tempTable:
+ self.cursor.execute( 'DROP TEMPORARY TABLE %s' % tempTable )
+
+ return traits
+
+
+
+
+ # XZ, 09/20/2008: This function creates TEMPORARY TABLE tmpTableName_2 and return its name.
+ # XZ, 09/20/2008: It stores top literature correlation values associated with the input geneId.
+ # XZ, 09/20/2008: Attention: In each row, the input geneId is always in column GeneId1.
+ #XZ, 12/16/2008: the input geneid can be of mouse, rat or human type
+ def getTempLiteratureTable(self, species, input_species_geneid, returnNumber):
+ # according to mysql the TEMPORARY TABLE name should not have to be unique because
+ # it is only available to the current connection. This program will be invoked via command line, but if it
+ # were to be invoked over mod_python this could cuase problems. mod_python will keep the connection alive
+ # in its executing threads ( i think) so there is a potential for the table not being dropped between users.
+ #XZ, 01/29/2009: To prevent the potential risk, I generate random table names and drop the tables after use them.
+
+
+ # the 'input_species_geneid' could be rat or human geneid, need to translate it to mouse geneid
+ translated_mouse_geneid = self.translateToMouseGeneID (species, input_species_geneid)
+
+ tmpTableName_1 = webqtlUtil.genRandStr(prefix="LITERATURE")
+
+ q1 = 'CREATE TEMPORARY TABLE %s (GeneId1 int(12) unsigned, GeneId2 int(12) unsigned PRIMARY KEY, value double)' % tmpTableName_1
+ q2 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId1,GeneId2,value FROM LCorrRamin3 WHERE GeneId1=%s' % (tmpTableName_1, translated_mouse_geneid)
+ q3 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId2,GeneId1,value FROM LCorrRamin3 WHERE GeneId2=%s AND GeneId1!=%s' % (tmpTableName_1, translated_mouse_geneid,translated_mouse_geneid)
+ for x in [q1,q2,q3]: self.cursor.execute(x)
+
+ #XZ, 09/23/2008: Just use the top records insteard of using all records
+ tmpTableName_2 = webqtlUtil.genRandStr(prefix="TOPLITERATURE")
+
+ q1 = 'CREATE TEMPORARY TABLE %s (GeneId1 int(12) unsigned, GeneId2 int(12) unsigned PRIMARY KEY, value double)' % tmpTableName_2
+ self.cursor.execute(q1)
+ q2 = 'SELECT GeneId1, GeneId2, value FROM %s ORDER BY value DESC' % tmpTableName_1
+ self.cursor.execute(q2)
+ result = self.cursor.fetchall()
+
+ counter = 0 #this is to count how many records being inserted into table
+ for one_row in result:
+ mouse_geneid1, mouse_geneid2, lit_corr_alue = one_row
+
+ #mouse_geneid1 has been tested before, now should test if mouse_geneid2 has corresponding geneid in other species
+ translated_species_geneid = 0
+ if species == 'mouse':
+ translated_species_geneid = mouse_geneid2
+ elif species == 'rat':
+ self.cursor.execute( "SELECT rat FROM GeneIDXRef WHERE mouse=%d" % int(mouse_geneid2) )
+ record = self.cursor.fetchone()
+ if record:
+ translated_species_geneid = record[0]
+ elif species == 'human':
+ self.cursor.execute( "SELECT human FROM GeneIDXRef WHERE mouse=%d" % int(mouse_geneid2) )
+ record = self.cursor.fetchone()
+ if record:
+ translated_species_geneid = record[0]
+
+ if translated_species_geneid:
+ self.cursor.execute( 'INSERT INTO %s (GeneId1, GeneId2, value) VALUES (%d,%d,%f)' % (tmpTableName_2, int(input_species_geneid),int(translated_species_geneid), float(lit_corr_alue)) )
+ counter = counter + 1
+
+ #pay attention to the number
+ if (counter > 2*returnNumber):
+ break
+
+ self.cursor.execute('DROP TEMPORARY TABLE %s' % tmpTableName_1)
+
+ return tmpTableName_2
+
+
+
+ #XZ, 09/23/2008: In tissue correlation tables, there is no record of GeneId1 == GeneId2
+ #XZ, 09/24/2008: Note that the correlation value can be negative.
+ def getTempTissueCorrTable(self, primaryTraitSymbol="", TissueProbeSetFreezeId=0, method="", returnNumber=0):
+
+ def cmpTissCorrAbsoluteValue(A, B):
+ try:
+ if abs(A[1]) < abs(B[1]): return 1
+ elif abs(A[1]) == abs(B[1]):
+ return 0
+ else: return -1
+ except:
+ return 0
+
+ symbolCorrDict, symbolPvalueDict = self.calculateCorrOfAllTissueTrait(primaryTraitSymbol=primaryTraitSymbol, TissueProbeSetFreezeId=TISSUE_MOUSE_DB, method=method)
+
+ symbolCorrList = symbolCorrDict.items()
+
+ symbolCorrList.sort(cmpTissCorrAbsoluteValue)
+ symbolCorrList = symbolCorrList[0 : 2*returnNumber]
+
+ tmpTableName = webqtlUtil.genRandStr(prefix="TOPTISSUE")
+
+ q1 = 'CREATE TEMPORARY TABLE %s (Symbol varchar(100) PRIMARY KEY, Correlation float, PValue float)' % tmpTableName
+ self.cursor.execute(q1)
+
+ for one_pair in symbolCorrList:
+ one_symbol = one_pair[0]
+ one_corr = one_pair[1]
+ one_p_value = symbolPvalueDict[one_symbol]
+
+ self.cursor.execute( "INSERT INTO %s (Symbol, Correlation, PValue) VALUES ('%s',%f,%f)" % (tmpTableName, one_symbol, float(one_corr), float(one_p_value)) )
+
+ return tmpTableName
+
+
+ #XZ, 01/09/2009: This function was created by David Crowell. Xiaodong cleaned up and modified it.
+ def fetchLitCorrelations(self, species, GeneId, db, returnNumber): ### Used to generate Lit Correlations when calculations are done from text file. dcrowell August 2008
+ """Uses getTempLiteratureTable to generate table of literatire correlations. This function then gathers that data and
+ pairs it with the TraitID string. Takes as its arguments a formdata instance, and a database instance.
+ Returns a dictionary of 'TraitID':'LitCorr' for the requested correlation"""
+
+ tempTable = self.getTempLiteratureTable(species=species, input_species_geneid=GeneId, returnNumber=returnNumber)
+
+ query = "SELECT %s.Name, %s.value" % (db.type,tempTable)
+ query += ' FROM (%s, %sXRef, %sFreeze)' % (db.type, db.type, db.type)
+ query += ' LEFT JOIN %s ON %s.GeneId2=ProbeSet.GeneId ' % (tempTable,tempTable)
+ query += "WHERE ProbeSet.GeneId IS NOT NULL AND %s.value IS NOT NULL AND %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (tempTable, db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type)
+
+ self.cursor.execute(query)
+ results = self.cursor.fetchall()
+
+ litCorrDict = {}
+
+ for entry in results:
+ traitName,litcorr = entry
+ litCorrDict[traitName] = litcorr
+
+ self.cursor.execute('DROP TEMPORARY TABLE %s' % tempTable)
+
+ return litCorrDict
+
+
+
+ #XZ, 01/09/2009: Xiaodong created this function.
+ def fetchTissueCorrelations(self, db, primaryTraitSymbol="", TissueProbeSetFreezeId=0, method="", returnNumber = 0):
+ """Uses getTempTissueCorrTable to generate table of tissue correlations. This function then gathers that data and
+ pairs it with the TraitID string. Takes as its arguments a formdata instance, and a database instance.
+ Returns a dictionary of 'TraitID':(tissueCorr, tissuePValue) for the requested correlation"""
+
+
+ tempTable = self.getTempTissueCorrTable(primaryTraitSymbol=primaryTraitSymbol, TissueProbeSetFreezeId=TISSUE_MOUSE_DB, method=method, returnNumber=returnNumber)
+
+ query = "SELECT ProbeSet.Name, %s.Correlation, %s.PValue" % (tempTable, tempTable)
+ query += ' FROM (ProbeSet, ProbeSetXRef, ProbeSetFreeze)'
+ query += ' LEFT JOIN %s ON %s.Symbol=ProbeSet.Symbol ' % (tempTable,tempTable)
+ query += "WHERE ProbeSetFreeze.Name = '%s' and ProbeSetFreeze.Id=ProbeSetXRef.ProbeSetFreezeId and ProbeSet.Id = ProbeSetXRef.ProbeSetId and ProbeSet.Symbol IS NOT NULL AND %s.Correlation IS NOT NULL" % (db.name, tempTable)
+
+ self.cursor.execute(query)
+ results = self.cursor.fetchall()
+
+ tissueCorrDict = {}
+
+ for entry in results:
+ traitName, tissueCorr, tissuePValue = entry
+ tissueCorrDict[traitName] = (tissueCorr, tissuePValue)
+
+ self.cursor.execute('DROP TEMPORARY TABLE %s' % tempTable)
+
+ return tissueCorrDict
+
+
+
+ #XZ, 01/13/2008
+ def getLiteratureCorrelationByList(self, input_trait_mouse_geneid=None, species=None, traitList=None):
+
+ tmpTableName = webqtlUtil.genRandStr(prefix="LITERATURE")
+
+ q1 = 'CREATE TEMPORARY TABLE %s (GeneId1 int(12) unsigned, GeneId2 int(12) unsigned PRIMARY KEY, value double)' % tmpTableName
+ q2 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId1,GeneId2,value FROM LCorrRamin3 WHERE GeneId1=%s' % (tmpTableName, input_trait_mouse_geneid)
+ q3 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId2,GeneId1,value FROM LCorrRamin3 WHERE GeneId2=%s AND GeneId1!=%s' % (tmpTableName, input_trait_mouse_geneid, input_trait_mouse_geneid)
+
+ for x in [q1,q2,q3]:
+ self.cursor.execute(x)
+
+ for thisTrait in traitList:
+ try:
+ if thisTrait.geneid:
+ thisTrait.mouse_geneid = self.translateToMouseGeneID(species, thisTrait.geneid)
+ else:
+ thisTrait.mouse_geneid = 0
+ except:
+ thisTrait.mouse_geneid = 0
+
+ if thisTrait.mouse_geneid and str(thisTrait.mouse_geneid).find(";") == -1:
+ try:
+ self.cursor.execute("SELECT value FROM %s WHERE GeneId2 = %s" % (tmpTableName, thisTrait.mouse_geneid))
+ result = self.cursor.fetchone()
+ if result:
+ thisTrait.LCorr = result[0]
+ else:
+ thisTrait.LCorr = None
+ except:
+ thisTrait.LCorr = None
+ else:
+ thisTrait.LCorr = None
+
+ self.cursor.execute("DROP TEMPORARY TABLE %s" % tmpTableName)
+
+ return traitList
+
+ def get_trait(self, cached, vals):
+
+ if cached:
+ _log.info("Using the fast method because the file exists")
+ lit_corrs = {}
+ tissue_corrs = {}
+ use_lit = False
+ if self.method == METHOD_LIT:
+ lit_corrs = self.fetchLitCorrelations(species=self.species, GeneId=self.gene_id, db=self.db, returnNumber=self.returnNumber)
+ use_lit = True
+
+ use_tissue_corr = False
+ if self.method in TISSUE_METHODS:
+ tissue_corrs = self.fetchTissueCorrelations(db=self.db, primaryTraitSymbol=self.trait_symbol, TissueProbeSetFreezeId=TISSUE_MOUSE_DB, method=self.method, returnNumber = self.returnNumber)
+ use_tissue_corr = True
+
+ DatabaseFileName = self.getFileName( target_db_name=self.target_db_name )
+ datasetFile = open(webqtlConfig.TEXTDIR+DatabaseFileName,'r')
+
+ #XZ, 01/08/2009: read the first line
+ line = datasetFile.readline()
+ cached_sample_names = webqtlUtil.readLineCSV(line)[1:]
+
+ #XZ, 01/08/2009: This step is critical. It is necessary for this new method.
+ #XZ: The original function fetchAllDatabaseData uses all strains stored in variable _strains to
+ #XZ: retrieve the values of each strain from database in real time.
+ #XZ: The new method uses all strains stored in variable dataset_strains to create a new variable
+ #XZ: _newvals. _newvals has the same length as dataset_strains. The items in _newvals is in
+ #XZ: the same order of items in dataset_strains. The value of each item in _newvals is either
+ #XZ: the value of correspinding strain in _vals or 'None'.
+ new_vals = []
+ for name in cached_sample_names:
+ if name in self.sample_names:
+ new_vals.append(float(vals[self.sample_names.index(name)]))
+ else:
+ new_vals.append('None')
+
+ nnCorr = len(new_vals)
+
+ #XZ, 01/14/2009: If literature corr or tissue corr is selected,
+ #XZ: there is no need to use parallel computing.
+
+ traits = []
+ data_start = 1
+ for line in datasetFile:
+ raw_trait = webqtlUtil.readLineCSV(line)
+ trait = Trait.from_csv(raw_trait, data_start)
+ trait.lit_corr = lit_corrs.get(trait.name)
+ trait.tissue_corr, trait.p_tissue = tissue_corrs.get(trait.name, (None, None))
+ traits.append(trait)
+
+ return traits, new_vals
+
+ else:
+ _log.info("Using the slow method for correlation")
+
+ _log.info("Fetching from database")
+ traits = self.fetchAllDatabaseData(species=self.species, GeneId=self.gene_id, GeneSymbol=self.trait_symbol, strains=self.sample_names, db=self.db, method=self.method, returnNumber=self.returnNumber, tissueProbeSetFreezeId= self.tissue_probeset_freeze_id)
+ _log.info("Done fetching from database")
+ totalTraits = len(traits) #XZ, 09/18/2008: total trait number
+
+ return traits, vals
+
+
+ def do_parallel_correlation(self):
+ _log.info("Invoking parallel computing")
+ input_line_list = datasetFile.readlines()
+ _log.info("Read lines from the file")
+ all_line_number = len(input_line_list)
+
+ step = 1000
+ job_number = math.ceil( float(all_line_number)/step )
+
+ job_input_lists = []
+
+ _log.info("Configuring jobs")
+
+ for job_index in range( int(job_number) ):
+ starti = job_index*step
+ endi = min((job_index+1)*step, all_line_number)
+
+ one_job_input_list = []
+
+ for i in range( starti, endi ):
+ one_job_input_list.append( input_line_list[i] )
+
+ job_input_lists.append( one_job_input_list )
+
+ _log.info("Creating pp servers")
+
+ ppservers = ()
+ # Creates jobserver with automatically detected number of workers
+ job_server = pp.Server(ppservers=ppservers)
+
+ _log.info("Done creating servers")
+
+ jobs = []
+ results = []
+
+ _log.info("Starting parallel computation, submitting jobs")
+ for one_job_input_list in job_input_lists: #pay attention to modules from outside
+ jobs.append( job_server.submit(func=compute_corr, args=(nnCorr, _newvals, one_job_input_list, self.method), depfuncs=(), modules=("utility.webqtlUtil",)) )
+ _log.info("Done submitting jobs")
+
+ for one_job in jobs:
+ one_result = one_job()
+ results.append( one_result )
+
+ _log.info("Acquiring results")
+
+ for one_result in results:
+ for one_traitinfo in one_result:
+ allcorrelations.append( one_traitinfo )
+
+ _log.info("Appending the results")
+
+ datasetFile.close()
+ totalTraits = len(allcorrelations)
+ _log.info("Done correlating using the fast method")
+
+
+ def correlate(self, vals):
+
+ correlations = []
+
+ #XZ: Use the fast method only for probeset dataset, and this dataset must have been created.
+ #XZ: Otherwise, use original method
+ _log.info("Entering correlation")
+
+ db_filename = self.getFileName( target_db_name=self.target_db_name )
+
+ cache_available = db_filename in os.listdir(webqtlConfig.TEXTDIR)
+
+ # If the cache file exists, do a cached correlation for probeset data
+ if self.db.type == "ProbeSet":
+# if self.method in [METHOD_SAMPLE_PEARSON, METHOD_SAMPLE_RANK] and cache_available:
+# traits = do_parallel_correlation()
+#
+# else:
+
+ (traits, vals) = self.get_trait(cache_available, vals)
+
+ for trait in traits:
+ trait.calculate_correlation(vals, self.method)
+
+ self.record_count = len(traits) #ZS: This isn't a good way to get this value, so I need to change it later
+
+ #XZ, 3/31/2010: Theoretically, we should create one function 'comTissueCorr'
+ #to compare each trait by their tissue corr p values.
+ #But because the tissue corr p values are generated by permutation test,
+ #the top ones always have p value 0. So comparing p values actually does nothing.
+ #In addition, for the tissue data in our database, the N is always the same.
+ #So it's safe to compare with tissue corr statistic value.
+ #That's the same as literature corr.
+ #if self.method in [METHOD_LIT, METHOD_TISSUE_PEARSON, METHOD_TISSUE_RANK] and self.gene_id:
+ # traits.sort(webqtlUtil.cmpLitCorr)
+ #else:
+ #if self.method in TISSUE_METHODS:
+ # sort(traits, key=lambda A: math.fabs(A.tissue_corr))
+ #elif self.method == METHOD_LIT:
+ # traits.sort(traits, key=lambda A: math.fabs(A.lit_corr))
+ #else:
+ traits = sortTraitCorrelations(traits, self.method)
+
+ # Strip to the top N correlations
+ traits = traits[:min(self.returnNumber, len(traits))]
+
+ addLiteratureCorr = False
+ addTissueCorr = False
+
+ trait_list = []
+ for trait in traits:
+ db_trait = webqtlTrait(db=self.db, name=trait.name, cursor=self.cursor)
+ db_trait.retrieveInfo( QTL='Yes' )
+
+ db_trait.Name = trait.name
+ db_trait.corr = trait.correlation
+ db_trait.nOverlap = trait.overlap
+ db_trait.corrPValue = trait.p_value
+
+ # NL, 07/19/2010
+ # js function changed, add a new parameter rankOrder for js function 'showTissueCorrPlot'
+ db_trait.RANK_ORDER = self.RANK_ORDERS[self.method]
+
+ #XZ, 26/09/2008: Method is 4 or 5. Have fetched tissue corr, but no literature correlation yet.
+ if self.method in TISSUE_METHODS:
+ db_trait.tissueCorr = trait.tissue_corr
+ db_trait.tissuePValue = trait.p_tissue
+ addTissueCorr = True
+
+
+ #XZ, 26/09/2008: Method is 3, Have fetched literature corr, but no tissue corr yet.
+ elif self.method == METHOD_LIT:
+ db_trait.LCorr = trait.lit_corr
+ db_trait.mouse_geneid = self.translateToMouseGeneID(self.species, db_trait.geneid)
+ addLiteratureCorr = True
+
+ #XZ, 26/09/2008: Method is 1 or 2. Have NOT fetched literature corr and tissue corr yet.
+ # Phenotype data will not have geneid, and neither will some probes
+ # we need to handle this because we will get an attribute error
+ else:
+ if self.input_trait_mouse_gene_id and self.db.type=="ProbeSet":
+ addLiteratureCorr = True
+ if self.trait_symbol and self.db.type=="ProbeSet":
+ addTissueCorr = True
+
+ trait_list.append(db_trait)
+
+ if addLiteratureCorr:
+ trait_list = self.getLiteratureCorrelationByList(self.input_trait_mouse_gene_id,
+ self.species, trait_list)
+ if addTissueCorr:
+ trait_list = self.getTissueCorrelationByList(
+ primaryTraitSymbol = self.trait_symbol,
+ traitList = trait_list,
+ TissueProbeSetFreezeId = TISSUE_MOUSE_DB,
+ method=self.method)
+
+ return trait_list
+
+
+ def calculateCorrOfAllTissueTrait(self, primaryTraitSymbol=None, TissueProbeSetFreezeId=None, method=None):
+
+ symbolCorrDict = {}
+ symbolPvalueDict = {}
+
+ primaryTraitSymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=[primaryTraitSymbol], TissueProbeSetFreezeId=TISSUE_MOUSE_DB)
+ primaryTraitValue = primaryTraitSymbolValueDict.values()[0]
+
+ SymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=[], TissueProbeSetFreezeId=TISSUE_MOUSE_DB)
+
+ if method in ["2","5"]:
+ symbolCorrDict, symbolPvalueDict = correlationFunction.batchCalTissueCorr(primaryTraitValue,SymbolValueDict,method='spearman')
+ else:
+ symbolCorrDict, symbolPvalueDict = correlationFunction.batchCalTissueCorr(primaryTraitValue,SymbolValueDict)
+
+
+ return (symbolCorrDict, symbolPvalueDict)
+
+
+
+ #XZ, 10/13/2010
+ def getTissueCorrelationByList(self, primaryTraitSymbol=None, traitList=None, TissueProbeSetFreezeId=None, method=None):
+
+ primaryTraitSymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=[primaryTraitSymbol], TissueProbeSetFreezeId=TISSUE_MOUSE_DB)
+
+ if primaryTraitSymbol.lower() in primaryTraitSymbolValueDict:
+ primaryTraitValue = primaryTraitSymbolValueDict[primaryTraitSymbol.lower()]
+
+ geneSymbolList = []
+
+ for thisTrait in traitList:
+ if hasattr(thisTrait, 'symbol'):
+ geneSymbolList.append(thisTrait.symbol)
+
+ SymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=geneSymbolList, TissueProbeSetFreezeId=TISSUE_MOUSE_DB)
+
+ for thisTrait in traitList:
+ if hasattr(thisTrait, 'symbol') and thisTrait.symbol and thisTrait.symbol.lower() in SymbolValueDict:
+ oneTraitValue = SymbolValueDict[thisTrait.symbol.lower()]
+ if method in ["2","5"]:
+ result = correlationFunction.calZeroOrderCorrForTiss( primaryTraitValue, oneTraitValue, method='spearman' )
+ else:
+ result = correlationFunction.calZeroOrderCorrForTiss( primaryTraitValue, oneTraitValue)
+ thisTrait.tissueCorr = result[0]
+ thisTrait.tissuePValue = result[2]
+ else:
+ thisTrait.tissueCorr = None
+ thisTrait.tissuePValue = None
+ else:
+ for thisTrait in traitList:
+ thisTrait.tissueCorr = None
+ thisTrait.tissuePValue = None
+
+ return traitList
+
+
+ def getTopInfo(self, myTrait=None, method=None, db=None, target_db_name=None, returnNumber=None, methodDict=None, totalTraits=None, identification=None ):
+
+ if myTrait:
+ if method in ["1","2"]: #genetic correlation
+ info = HT.Paragraph("Values of Record %s in the " % myTrait.getGivenName(), HT.Href(text=myTrait.db.fullname,url=webqtlConfig.INFOPAGEHREF % myTrait.db.name,target="_blank", Class="fwn"),
+ " database were compared to all %d records in the " % self.record_count, HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank", Class="fwn"),
+ ' database. The top %d correlations ranked by the %s are displayed.' % (returnNumber,methodDict[method]),
+ ' You can resort this list using the small arrowheads in the top row.')
+ else:
+ #myTrait.retrieveInfo()#need to know geneid and symbol
+ if method == "3":#literature correlation
+ searchDBName = "Literature Correlation"
+ searchDBLink = "/correlationAnnotation.html#literatureCorr"
+ else: #tissue correlation
+ searchDBName = "Tissue Correlation"
+ searchDBLink = "/correlationAnnotation.html#tissueCorr"
+ info = HT.Paragraph("Your input record %s in the " % myTrait.getGivenName(), HT.Href(text=myTrait.db.fullname,url=webqtlConfig.INFOPAGEHREF % myTrait.db.name,target="_blank", Class="fwn"),
+ " database corresponds to ",
+ HT.Href(text='gene Id %s, and gene symbol %s' % (myTrait.geneid, myTrait.symbol), target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % myTrait.geneid, Class="fs12 fwn"),
+ '. GN ranked all genes in the ', HT.Href(text=searchDBName,url=searchDBLink,target="_blank", Class="fwn"),' database by the %s.' % methodDict[method],
+ ' The top %d probes or probesets in the ' % returnNumber, HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank", Class="fwn"),
+ ' database corresponding to the top genes ranked by the %s are displayed.' %( methodDict[method]),
+ ' You can resort this list using the small arrowheads in the top row.' )
+
+ elif identification:
+ info = HT.Paragraph('Values of %s were compared to all %d traits in ' % (identification, self.record_count),
+ HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank",Class="fwn"),
+ ' database. The TOP %d correlations ranked by the %s are displayed.' % (returnNumber,methodDict[method]),
+ ' You can resort this list using the small arrowheads in the top row.')
+
+ else:
+ info = HT.Paragraph('Trait values were compared to all values in ',
+ HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank",Class="fwn"),
+ ' database. The TOP %d correlations ranked by the %s are displayed.' % (returnNumber,methodDict[method]),
+ ' You can resort this list using the small arrowheads in the top row.')
+
+ if db.type=="Geno":
+ info.append(HT.BR(),HT.BR(),'Clicking on the Locus will open the genotypes data for that locus. Click on the correlation to see a scatter plot of the trait data.')
+ elif db.type=="Publish":
+ info.append(HT.BR(),HT.BR(),'Clicking on the record ID will open the published phenotype data for that publication. Click on the correlation to see a scatter plot of the trait data. ')
+ elif db.type=="ProbeSet":
+ info.append(HT.BR(),'Click the correlation values to generate scatter plots. Select the Record ID to open the Trait Data and Analysis form. Select the symbol to open NCBI Entrez.')
+ else:
+ pass
+
+
+ return info
+
+
+ def createExcelFileWithTitleAndFooter(self, workbook=None, identification=None, db=None, returnNumber=None):
+
+ worksheet = workbook.add_worksheet()
+
+ titleStyle = workbook.add_format(align = 'left', bold = 0, size=14, border = 1, border_color="gray")
+
+ ##Write title Info
+ # Modified by Hongqiang Li
+ worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle)
+ worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle)
+ worksheet.write([2, 0], "Trait : %s" % identification, titleStyle)
+ worksheet.write([3, 0], "Database : %s" % db.fullname, titleStyle)
+ worksheet.write([4, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()), titleStyle)
+ worksheet.write([5, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()), titleStyle)
+ worksheet.write([6, 0], "Status of data ownership: Possibly unpublished data; please see %s/statusandContact.html for details on sources, ownership, and usage of these data." % webqtlConfig.PORTADDR, titleStyle)
+ #Write footer info
+ worksheet.write([9 + returnNumber, 0], "Funding for The GeneNetwork: NIAAA (U01AA13499, U24AA13513), NIDA, NIMH, and NIAAA (P20-DA21131), NCI MMHCC (U01CA105417), and NCRR (U01NR 105417)", titleStyle)
+ worksheet.write([10 + returnNumber, 0], "PLEASE RETAIN DATA SOURCE INFORMATION WHENEVER POSSIBLE", titleStyle)
+
+ return worksheet
+
+
+ def getTableHeaderForGeno(self, method=None, worksheet=None, newrow=None, headingStyle=None):
+
+ tblobj_header = []
+
+ if method in ["1","3","4"]:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
+ THCell(HT.TD('Record', HT.BR(), 'ID', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Record ID', idx=1),
+ THCell(HT.TD('Location', HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Location (Chr and Mb)', idx=2),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample r", idx=3),
+ THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=4),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(r)", idx=5)]]
+
+ for ncol, item in enumerate(['Record ID', 'Location (Chr, Mb)', 'Sample r', 'N Cases', 'Sample p(r)']):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+ else:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb"), sort=0),
+ THCell(HT.TD('Record', HT.BR(), 'ID', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Record ID', idx=1),
+ THCell(HT.TD('Location', HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Location (Chr and Mb)', idx=2),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample rho", idx=3),
+ THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=4),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(rho)", idx=5)]]
+
+ for ncol, item in enumerate(['Record ID', 'Location (Chr, Mb)', 'Sample rho', 'N Cases', 'Sample p(rho)']):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+
+
+ return tblobj_header, worksheet
+
+
+ def getTableBodyForGeno(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None):
+
+ tblobj_body = []
+
+ for thisTrait in traitList:
+ tr = []
+
+ trId = str(thisTrait)
+
+ corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.corr))
+
+ tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
+
+ tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"),align="left", Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name.upper()))
+
+ #XZ: trait_location_value is used for sorting
+ trait_location_repr = '--'
+ trait_location_value = 1000000
+
+ if thisTrait.chr and thisTrait.mb:
+ try:
+ trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb
+ except:
+ if thisTrait.chr.upper() == 'X':
+ trait_location_value = 20*1000 + thisTrait.mb
+ else:
+ trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb
+
+ trait_location_repr = 'Chr%s: %.6f' % (thisTrait.chr, float(thisTrait.mb) )
+
+ tr.append(TDCell(HT.TD(trait_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), trait_location_repr, trait_location_value))
+
+
+ repr='%3.3f' % thisTrait.corr
+ tr.append(TDCell(HT.TD(HT.Href(text=repr, url="javascript:showCorrPlot('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"), Class="fs12 fwn ffl b1 c222", nowrap='ON', align='right'),repr,abs(thisTrait.corr)))
+
+ repr = '%d' % thisTrait.nOverlap
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222",align='right'),repr,thisTrait.nOverlap))
+
+ repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
+ tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
+
+ tblobj_body.append(tr)
+
+ for ncol, item in enumerate([thisTrait.name, trait_location_repr, thisTrait.corr, thisTrait.nOverlap, thisTrait.corrPValue]):
+ worksheet.write([newrow, ncol], item)
+ newrow += 1
+
+ return tblobj_body, worksheet, corrScript
+
+
+ def getTableHeaderForPublish(self, method=None, worksheet=None, newrow=None, headingStyle=None):
+
+ tblobj_header = []
+
+ if method in ["1","3","4"]:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0),
+ THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Record ID", idx=1),
+ THCell(HT.TD('Phenotype', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Phenotype", idx=2),
+ THCell(HT.TD('Authors', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Authors", idx=3),
+ THCell(HT.TD('Year', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Year", idx=4),
+ THCell(HT.TD('Max',HT.BR(), 'LRS', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS", idx=5),
+ THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS Location", idx=6),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample r", idx=7),
+ THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=8),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(r)", idx=9)]]
+
+ for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "Pubmed Id", "Max LRS", "Max LRS Location (Chr: Mb)", "Sample r", "N Cases", "Sample p(r)"]):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+ else:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0),
+ THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Record ID", idx=1),
+ THCell(HT.TD('Phenotype', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Phenotype", idx=2),
+ THCell(HT.TD('Authors', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Authors", idx=3),
+ THCell(HT.TD('Year', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Year", idx=4),
+ THCell(HT.TD('Max',HT.BR(), 'LRS', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS", idx=5),
+ THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS Location", idx=6),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample rho", idx=7),
+ THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=8),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(rho)", idx=9)]]
+
+ for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "Pubmed Id", "Max LRS", "Max LRS Location (Chr: Mb)", "Sample rho", "N Cases", "Sample p(rho)"]):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+
+
+ return tblobj_header, worksheet
+
+
+ def getTableBodyForPublish(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None, species=''):
+
+ tblobj_body = []
+
+ for thisTrait in traitList:
+ tr = []
+
+ trId = str(thisTrait)
+
+ corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.corr))
+
+ tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
+
+ tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="center", Class="fs12 fwn b1 c222"),str(thisTrait.name), thisTrait.name))
+
+ PhenotypeString = thisTrait.post_publication_description
+ if thisTrait.confidential:
+ if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users):
+ PhenotypeString = thisTrait.pre_publication_description
+
+ tr.append(TDCell(HT.TD(PhenotypeString, Class="fs12 fwn b1 c222"), PhenotypeString, PhenotypeString.upper()))
+
+ tr.append(TDCell(HT.TD(thisTrait.authors, Class="fs12 fwn b1 c222 fsI"),thisTrait.authors, thisTrait.authors.strip().upper()))
+
+ try:
+ PubMedLinkText = myear = repr = int(thisTrait.year)
+ except:
+ PubMedLinkText = repr = "--"
+ myear = 0
+ if thisTrait.pubmed_id:
+ PubMedLink = HT.Href(text= repr,url= webqtlConfig.PUBMEDLINK_URL % thisTrait.pubmed_id,target='_blank', Class="fs12 fwn")
+ else:
+ PubMedLink = repr
+
+ tr.append(TDCell(HT.TD(PubMedLink, Class="fs12 fwn b1 c222", align='center'), repr, myear))
+
+ #LRS and its location
+ LRS_score_repr = '--'
+ LRS_score_value = 0
+ LRS_location_repr = '--'
+ LRS_location_value = 1000000
+ LRS_flag = 1
+
+ #Max LRS and its Locus location
+ if thisTrait.lrs and thisTrait.locus:
+ self.cursor.execute("""
+ select Geno.Chr, Geno.Mb from Geno, Species
+ where Species.Name = '%s' and
+ Geno.Name = '%s' and
+ Geno.SpeciesId = Species.Id
+ """ % (species, thisTrait.locus))
+ result = self.cursor.fetchone()
+
+ if result:
+ if result[0] and result[1]:
+ LRS_Chr = result[0]
+ LRS_Mb = result[1]
+
+ #XZ: LRS_location_value is used for sorting
+ try:
+ LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb)
+ except:
+ if LRS_Chr.upper() == 'X':
+ LRS_location_value = 20*1000 + float(LRS_Mb)
+ else:
+ LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb)
+
+
+ LRS_score_repr = '%3.1f' % thisTrait.lrs
+ LRS_score_value = thisTrait.lrs
+ LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) )
+ LRS_flag = 0
+
+ #tr.append(TDCell(HT.TD(HT.Href(text=LRS_score_repr,url="javascript:showIntervalMapping('%s', '%s : %s')" % (formName, thisTrait.db.shortname, thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn ffl b1 c222", align='right', nowrap="on"),LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222"), LRS_location_repr, LRS_location_value))
+
+ if LRS_flag:
+ tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222"), LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222"), LRS_location_repr, LRS_location_value))
+
+ repr = '%3.4f' % thisTrait.corr
+ tr.append(TDCell(HT.TD(HT.Href(text=repr,url="javascript:showCorrPlot('%s', '%s')" % (formName,thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn b1 c222", align='right',nowrap="on"), repr, abs(thisTrait.corr)))
+
+ repr = '%d' % thisTrait.nOverlap
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.nOverlap))
+
+ repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
+ tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
+
+ tblobj_body.append(tr)
+
+ for ncol, item in enumerate([thisTrait.name, PhenotypeString, thisTrait.authors, thisTrait.year, thisTrait.pubmed_id, LRS_score_repr, LRS_location_repr, thisTrait.corr, thisTrait.nOverlap, thisTrait.corrPValue]):
+ worksheet.write([newrow, ncol], item)
+ newrow += 1
+
+ return tblobj_body, worksheet, corrScript
+
+
+ def getTableHeaderForProbeSet(self, method=None, worksheet=None, newrow=None, headingStyle=None):
+
+ tblobj_header = []
+
+ if method in ["1","3","4"]:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0),
+ THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Record ID", idx=1),
+ THCell(HT.TD('Gene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Gene ID", idx=2),
+ THCell(HT.TD('Homologene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Homologene ID", idx=3),
+ THCell(HT.TD('Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Symbol", idx=4),
+ THCell(HT.TD('Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Description", idx=5),
+ THCell(HT.TD('Location',HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Location (Chr: Mb)", idx=6),
+ THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mean Expr", idx=7),
+ THCell(HT.TD('Max',HT.BR(),'LRS',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS", idx=8),
+ THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS Location (Chr: Mb)", idx=9),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample r", idx=10),
+ THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=11),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(r)", idx=12),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Lit',HT.BR(), 'Corr', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#literatureCorr"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Lit Corr", idx=13),
+ #XZ, 09/22/2008: tissue correlation
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Tissue',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#tissue_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue r", idx=14),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Tissue',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#tissue_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue p(r)", idx=15)]]
+
+ for ncol, item in enumerate(['Record', 'Gene ID', 'Homologene ID', 'Symbol', 'Description', 'Location (Chr: Mb)', 'Mean Expr', 'Max LRS', 'Max LRS Location (Chr: Mb)', 'Sample r', 'N Cases', 'Sample p(r)', 'Lit Corr', 'Tissue r', 'Tissue p(r)']):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+ else:
+ tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0),
+ THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Record ID", idx=1),
+ THCell(HT.TD('Gene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Gene ID", idx=2),
+ THCell(HT.TD('Homologene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Homologene ID", idx=3),
+ THCell(HT.TD('Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Symbol", idx=4),
+ THCell(HT.TD('Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Description", idx=5),
+ THCell(HT.TD('Location',HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Location (Chr: Mb)", idx=6),
+ THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mean Expr", idx=7),
+ THCell(HT.TD('Max',HT.BR(),'LRS',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS", idx=8),
+ THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS Location (Chr: Mb)", idx=9),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample rho", idx=10),
+ THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=11),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#genetic_p_rho"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(rho)", idx=12),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Lit',HT.BR(), 'Corr', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#literatureCorr"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Lit Corr", idx=13),
+ #XZ, 09/22/2008: tissue correlation
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Tissue',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#tissue_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue rho", idx=14),
+ THCell(HT.TD(HT.Href(
+ text = HT.Span('Tissue',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"),
+ target = '_blank',
+ url = "/correlationAnnotation.html#tissue_p_r"),
+ Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue p(rho)", idx=15)]]
+
+ for ncol, item in enumerate(['Record ID', 'Gene ID', 'Homologene ID', 'Symbol', 'Description', 'Location (Chr: Mb)', 'Mean Expr', 'Max LRS', 'Max LRS Location (Chr: Mb)', 'Sample rho', 'N Cases', 'Sample p(rho)', 'Lit Corr', 'Tissue rho', 'Tissue p(rho)']):
+ worksheet.write([newrow, ncol], item, headingStyle)
+ worksheet.set_column([ncol, ncol], 2*len(item))
+
+ return tblobj_header, worksheet
+
+
+ def getTableBodyForProbeSet(self, traitList=[], primaryTrait=None, formName=None, worksheet=None, newrow=None, corrScript=None, species=''):
+
+ tblobj_body = []
+
+ for thisTrait in traitList:
+
+ if thisTrait.symbol:
+ pass
+ else:
+ thisTrait.symbol = "--"
+
+ if thisTrait.geneid:
+ symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % thisTrait.geneid, Class="fs12 fwn")
+ else:
+ symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % thisTrait.symbol, Class="fs12 fwn")
+
+ tr = []
+
+ trId = str(thisTrait)
+
+ corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.corr))
+
+ #XZ, 12/08/2008: checkbox
+ tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId))
+
+ #XZ, 12/08/2008: probeset name
+ tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName,thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn b1 c222"), thisTrait.name, thisTrait.name.upper()))
+
+ #XZ, 12/08/2008: gene id
+ if thisTrait.geneid:
+ tr.append(TDCell(None, thisTrait.geneid, val=999))
+ else:
+ tr.append(TDCell(None, thisTrait.geneid, val=999))
+
+ #XZ, 12/08/2008: homologene id
+ if thisTrait.homologeneid:
+ tr.append(TDCell("", thisTrait.homologeneid, val=999))
+ else:
+ tr.append(TDCell("", thisTrait.homologeneid, val=999))
+
+ #XZ, 12/08/2008: gene symbol
+ tr.append(TDCell(HT.TD(symbolurl, Class="fs12 fwn b1 c222 fsI"),thisTrait.symbol, thisTrait.symbol.upper()))
+
+ #XZ, 12/08/2008: description
+ #XZ, 06/05/2009: Rob asked to add probe target description
+ description_string = str(thisTrait.description).strip()
+ target_string = str(thisTrait.probe_target_description).strip()
+
+ description_display = ''
+
+ if len(description_string) > 1 and description_string != 'None':
+ description_display = description_string
+ else:
+ description_display = thisTrait.symbol
+
+ if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None':
+ description_display = description_display + '; ' + target_string.strip()
+
+ tr.append(TDCell(HT.TD(description_display, Class="fs12 fwn b1 c222"), description_display, description_display))
+
+ #XZ: trait_location_value is used for sorting
+ trait_location_repr = '--'
+ trait_location_value = 1000000
+
+ if thisTrait.chr and thisTrait.mb:
+ try:
+ trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb
+ except:
+ if thisTrait.chr.upper() == 'X':
+ trait_location_value = 20*1000 + thisTrait.mb
+ else:
+ trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb
+
+ trait_location_repr = 'Chr%s: %.6f' % (thisTrait.chr, float(thisTrait.mb) )
+
+ tr.append(TDCell(HT.TD(trait_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), trait_location_repr, trait_location_value))
+
+ """
+ #XZ, 12/08/2008: chromosome number
+ #XZ, 12/10/2008: use Mbvalue to sort chromosome
+ tr.append(TDCell( HT.TD(thisTrait.chr, Class="fs12 fwn b1 c222", align='right'), thisTrait.chr, Mbvalue) )
+
+ #XZ, 12/08/2008: Rob wants 6 digit precision, and we have to deal with that the mb could be None
+ if not thisTrait.mb:
+ tr.append(TDCell(HT.TD(thisTrait.mb, Class="fs12 fwn b1 c222",align='right'), thisTrait.mb, Mbvalue))
+ else:
+ tr.append(TDCell(HT.TD('%.6f' % thisTrait.mb, Class="fs12 fwn b1 c222", align='right'), thisTrait.mb, Mbvalue))
+ """
+
+
+
+ #XZ, 01/12/08: This SQL query is much faster.
+ self.cursor.execute("""
+ select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet
+ where ProbeSetXRef.ProbeSetFreezeId = %d and
+ ProbeSet.Id = ProbeSetXRef.ProbeSetId and
+ ProbeSet.Name = '%s'
+ """ % (thisTrait.db.id, thisTrait.name))
+ result = self.cursor.fetchone()
+ if result:
+ if result[0]:
+ mean = result[0]
+ else:
+ mean=0
+ else:
+ mean = 0
+
+ #XZ, 06/05/2009: It is neccessary to turn on nowrap
+ repr = "%2.3f" % mean
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'),repr, mean))
+
+ #LRS and its location
+ LRS_score_repr = '--'
+ LRS_score_value = 0
+ LRS_location_repr = '--'
+ LRS_location_value = 1000000
+ LRS_flag = 1
+
+ #Max LRS and its Locus location
+ if thisTrait.lrs and thisTrait.locus:
+ self.cursor.execute("""
+ select Geno.Chr, Geno.Mb from Geno, Species
+ where Species.Name = '%s' and
+ Geno.Name = '%s' and
+ Geno.SpeciesId = Species.Id
+ """ % (species, thisTrait.locus))
+ result = self.cursor.fetchone()
+
+ if result:
+ if result[0] and result[1]:
+ LRS_Chr = result[0]
+ LRS_Mb = result[1]
+
+ #XZ: LRS_location_value is used for sorting
+ try:
+ LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb)
+ except:
+ if LRS_Chr.upper() == 'X':
+ LRS_location_value = 20*1000 + float(LRS_Mb)
+ else:
+ LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb)
+
+
+ LRS_score_repr = '%3.1f' % thisTrait.lrs
+ LRS_score_value = thisTrait.lrs
+ LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) )
+ LRS_flag = 0
+
+ #tr.append(TDCell(HT.TD(HT.Href(text=LRS_score_repr,url="javascript:showIntervalMapping('%s', '%s : %s')" % (formName, thisTrait.db.shortname, thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn ffl b1 c222", align='right', nowrap="on"),LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), LRS_location_repr, LRS_location_value))
+
+ if LRS_flag:
+ tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222"), LRS_score_repr, LRS_score_value))
+ tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222"), LRS_location_repr, LRS_location_value))
+
+
+ #XZ, 12/08/2008: generic correlation
+ repr='%3.3f' % thisTrait.corr
+ tr.append(TDCell(HT.TD(HT.Href(text=repr, url="javascript:showCorrPlot('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"), Class="fs12 fwn ffl b1 c222", align='right'),repr,abs(thisTrait.corr)))
+
+ #XZ, 12/08/2008: number of overlaped cases
+ repr = '%d' % thisTrait.nOverlap
+ tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.nOverlap))
+
+ #XZ, 12/08/2008: p value of genetic correlation
+ repr = webqtlUtil.SciFloat(thisTrait.corrPValue)
+ tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue))
+
+ #XZ, 12/08/2008: literature correlation
+ LCorr = 0.0
+ LCorrStr = "--"
+ if hasattr(thisTrait, 'LCorr') and thisTrait.LCorr:
+ LCorr = thisTrait.LCorr
+ LCorrStr = "%2.3f" % thisTrait.LCorr
+ tr.append(TDCell(HT.TD(LCorrStr, Class="fs12 fwn b1 c222", align='right'), LCorrStr, abs(LCorr)))
+
+ #XZ, 09/22/2008: tissue correlation.
+ TCorr = 0.0
+ TCorrStr = "--"
+ #XZ, 11/20/2008: need to pass two geneids: input_trait_mouse_geneid and thisTrait.mouse_geneid
+ if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissueCorr:
+ TCorr = thisTrait.tissueCorr
+ TCorrStr = "%2.3f" % thisTrait.tissueCorr
+ # NL, 07/19/2010: add a new parameter rankOrder for js function 'showTissueCorrPlot'
+ rankOrder = self.RANK_ORDERS[self.method]
+ TCorrPlotURL = "javascript:showTissueCorrPlot('%s','%s','%s',%d)" %(formName, primaryTrait.symbol, thisTrait.symbol,rankOrder)
+ tr.append(TDCell(HT.TD(HT.Href(text=TCorrStr, url=TCorrPlotURL, Class="fs12 fwn ff1"), Class="fs12 fwn ff1 b1 c222", align='right'), TCorrStr, abs(TCorr)))
+ else:
+ tr.append(TDCell(HT.TD(TCorrStr, Class="fs12 fwn b1 c222", align='right'), TCorrStr, abs(TCorr)))
+
+ #XZ, 12/08/2008: p value of tissue correlation
+ TPValue = 1.0
+ TPValueStr = "--"
+ if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissuePValue: #XZ, 09/22/2008: thisTrait.tissuePValue can't be used here because it could be 0
+ TPValue = thisTrait.tissuePValue
+ TPValueStr = "%2.3f" % thisTrait.tissuePValue
+ tr.append(TDCell(HT.TD(TPValueStr, Class="fs12 fwn b1 c222", align='right'), TPValueStr, TPValue))
+
+ tblobj_body.append(tr)
+
+ for ncol, item in enumerate([thisTrait.name, thisTrait.geneid, thisTrait.homologeneid, thisTrait.symbol, thisTrait.description, trait_location_repr, mean, LRS_score_repr, LRS_location_repr, thisTrait.corr, thisTrait.nOverlap, thisTrait.corrPValue, LCorr, TCorr, TPValue]):
+ worksheet.write([newrow, ncol], item)
+
+ newrow += 1
+
+ return tblobj_body, worksheet, corrScript
diff --git a/wqflask/wqflask/correlation/__init__.py b/wqflask/wqflask/correlation/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/wqflask/wqflask/correlation/correlationFunction.py b/wqflask/wqflask/correlation/correlationFunction.py
new file mode 100644
index 00000000..4d62a468
--- /dev/null
+++ b/wqflask/wqflask/correlation/correlationFunction.py
@@ -0,0 +1,923 @@
+# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
+#
+# This program is free software: you can redistribute it and/or modify it
+# under the terms of the GNU Affero General Public License
+# as published by the Free Software Foundation, either version 3 of the
+# License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+# See the GNU Affero General Public License for more details.
+#
+# This program is available from Source Forge: at GeneNetwork Project
+# (sourceforge.net/projects/genenetwork/).
+#
+# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
+# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
+#
+#
+#
+# This module is used by GeneNetwork project (www.genenetwork.org)
+#
+# Created by GeneNetwork Core Team 2010/08/10
+#
+# Last updated by NL 2011/03/23
+
+
+import math
+import rpy2.robjects
+import pp
+import string
+
+from utility import webqtlUtil
+from base.webqtlTrait import webqtlTrait
+from dbFunction import webqtlDatabaseFunction
+
+
+
+#XZ: The input 'controls' is String. It contains the full name of control traits.
+#XZ: The input variable 'strainlst' is List. It contains the strain names of primary trait.
+#XZ: The returned tcstrains is the list of list [[],[]...]. So are tcvals and tcvars. The last returned parameter is list of numbers.
+#XZ, 03/29/2010: For each returned control trait, there is no None value in it.
+def controlStrains(controls, strainlst):
+
+ controls = controls.split(',')
+
+ cvals = {}
+ for oneTraitName in controls:
+ oneTrait = webqtlTrait(fullname=oneTraitName, cursor=webqtlDatabaseFunction.getCursor() )
+ oneTrait.retrieveData()
+ cvals[oneTraitName] = oneTrait.data
+
+ tcstrains = []
+ tcvals = []
+ tcvars = []
+
+ for oneTraitName in controls:
+ strains = []
+ vals = []
+ vars = []
+
+ for _strain in strainlst:
+ if cvals[oneTraitName].has_key(_strain):
+ _val = cvals[oneTraitName][_strain].val
+ if _val != None:
+ strains.append(_strain)
+ vals.append(_val)
+ vars.append(None)
+
+ tcstrains.append(strains)
+ tcvals.append(vals)
+ tcvars.append(vars)
+
+ return tcstrains, tcvals, tcvars, [len(x) for x in tcstrains]
+
+
+
+#XZ, 03/29/2010: After execution of functon "controlStrains" and "fixStrains", primary trait and control traits have the same strains and in the same order. There is no 'None' value in them.
+def fixStrains(_strains,_controlstrains,_vals,_controlvals,_vars,_controlvars):
+ """Corrects strains, vals, and vars so that all contrain only those strains common
+ to the reference trait and all control traits."""
+
+ def dictify(strains,vals,vars):
+ subdict = {}
+ for i in xrange(len(strains)):
+ subdict[strains[i]] = (vals[i],vars[i])
+ return subdict
+
+ #XZ: The 'dicts' is a list of dictionary. The first element is the dictionary of reference trait. The rest elements are for control traits.
+ dicts = []
+ dicts.append(dictify(_strains,_vals,_vars))
+
+ nCstrains = len(_controlstrains)
+ for i in xrange(nCstrains):
+ dicts.append(dictify(_controlstrains[i],_controlvals[i],_controlvars[i]))
+
+ _newstrains = []
+ _vals = []
+ _vars = []
+ _controlvals = [[] for x in xrange(nCstrains)]
+ _controlvars = [[] for x in xrange(nCstrains)]
+
+ for strain in _strains:
+ inall = True
+ for d in dicts:
+ if strain not in d:
+ inall = False
+ break
+ if inall:
+ _newstrains.append(strain)
+ _vals.append(dicts[0][strain][0])
+ _vars.append(dicts[0][strain][1])
+ for i in xrange(nCstrains):
+ _controlvals[i].append(dicts[i+1][strain][0])
+ _controlvars[i].append(dicts[i+1][strain][1])
+
+ return _newstrains, _vals, _controlvals, _vars, _controlvars
+
+
+#XZ, 6/15/2010: If there is no identical control traits, the returned list is empty.
+#else, the returned list has two elements of control trait name.
+def findIdenticalControlTraits ( controlVals, controlNames ):
+ nameOfIdenticalTraits = []
+
+ controlTraitNumber = len(controlVals)
+
+ if controlTraitNumber > 1:
+
+ #XZ: reset the precision of values and convert to string type
+ for oneTraitVal in controlVals:
+ for oneStrainVal in oneTraitVal:
+ oneStrainVal = '%.3f' % oneStrainVal
+
+ for i, oneTraitVal in enumerate( controlVals ):
+ for j in range(i+1, controlTraitNumber):
+ if oneTraitVal == controlVals[j]:
+ nameOfIdenticalTraits.append(controlNames[i])
+ nameOfIdenticalTraits.append(controlNames[j])
+
+ return nameOfIdenticalTraits
+
+#XZ, 6/15/2010: If there is no identical control traits, the returned list is empty.
+#else, the returned list has two elements of control trait name.
+#primaryVal is of list type. It contains value of primary trait.
+#primaryName is of string type.
+#controlVals is of list type. Each element is list too. Each element contain value of one control trait.
+#controlNames is of list type.
+def findIdenticalTraits (primaryVal, primaryName, controlVals, controlNames ):
+ nameOfIdenticalTraits = []
+
+ #XZ: reset the precision of values and convert to string type
+ for oneStrainVal in primaryVal:
+ oneStrainVal = '%.3f' % oneStrainVal
+
+ for oneTraitVal in controlVals:
+ for oneStrainVal in oneTraitVal:
+ oneStrainVal = '%.3f' % oneStrainVal
+
+ controlTraitNumber = len(controlVals)
+
+ if controlTraitNumber > 1:
+ for i, oneTraitVal in enumerate( controlVals ):
+ for j in range(i+1, controlTraitNumber):
+ if oneTraitVal == controlVals[j]:
+ nameOfIdenticalTraits.append(controlNames[i])
+ nameOfIdenticalTraits.append(controlNames[j])
+ break
+
+ if len(nameOfIdenticalTraits) == 0:
+ for i, oneTraitVal in enumerate( controlVals ):
+ if primaryVal == oneTraitVal:
+ nameOfIdenticalTraits.append(primaryName)
+ nameOfIdenticalTraits.append(controlNames[i])
+ break
+
+ return nameOfIdenticalTraits
+
+
+
+#XZ, 03/29/2010: The strains in primaryVal, controlVals, targetVals must be of the same number and in same order.
+#XZ: No value in primaryVal and controlVals could be None.
+
+def determinePartialsByR (primaryVal, controlVals, targetVals, targetNames, method='p'):
+
+ def compute_partial ( primaryVal, controlVals, targetVals, targetNames, method ):
+
+ rpy2.robjects.r("""
+pcor.test <- function(x,y,z,use="mat",method="p",na.rm=T){
+ # The partial correlation coefficient between x and y given z
+ #
+ # pcor.test is free and comes with ABSOLUTELY NO WARRANTY.
+ #
+ # x and y should be vectors
+ #
+ # z can be either a vector or a matrix
+ #
+ # use: There are two methods to calculate the partial correlation coefficient.
+ # One is by using variance-covariance matrix ("mat") and the other is by using recursive formula ("rec").
+ # Default is "mat".
+ #
+ # method: There are three ways to calculate the correlation coefficient,
+ # which are Pearson's ("p"), Spearman's ("s"), and Kendall's ("k") methods.
+ # The last two methods which are Spearman's and Kendall's coefficient are based on the non-parametric analysis.
+ # Default is "p".
+ #
+ # na.rm: If na.rm is T, then all the missing samples are deleted from the whole dataset, which is (x,y,z).
+ # If not, the missing samples will be removed just when the correlation coefficient is calculated.
+ # However, the number of samples for the p-value is the number of samples after removing
+ # all the missing samples from the whole dataset.
+ # Default is "T".
+
+ x <- c(x)
+ y <- c(y)
+ z <- as.data.frame(z)
+
+ if(use == "mat"){
+ p.use <- "Var-Cov matrix"
+ pcor = pcor.mat(x,y,z,method=method,na.rm=na.rm)
+ }else if(use == "rec"){
+ p.use <- "Recursive formula"
+ pcor = pcor.rec(x,y,z,method=method,na.rm=na.rm)
+ }else{
+ stop("use should be either rec or mat!\n")
+ }
+
+ # print the method
+ if(gregexpr("p",method)[[1]][1] == 1){
+ p.method <- "Pearson"
+ }else if(gregexpr("s",method)[[1]][1] == 1){
+ p.method <- "Spearman"
+ }else if(gregexpr("k",method)[[1]][1] == 1){
+ p.method <- "Kendall"
+ }else{
+ stop("method should be pearson or spearman or kendall!\n")
+ }
+
+ # sample number
+ n <- dim(na.omit(data.frame(x,y,z)))[1]
+
+ # given variables' number
+ gn <- dim(z)[2]
+
+ # p-value
+ if(p.method == "Kendall"){
+ statistic <- pcor/sqrt(2*(2*(n-gn)+5)/(9*(n-gn)*(n-1-gn)))
+ p.value <- 2*pnorm(-abs(statistic))
+
+ }else{
+ statistic <- pcor*sqrt((n-2-gn)/(1-pcor^2))
+ p.value <- 2*pnorm(-abs(statistic))
+ }
+
+ data.frame(estimate=pcor,p.value=p.value,statistic=statistic,n=n,gn=gn,Method=p.method,Use=p.use)
+}
+
+# By using var-cov matrix
+pcor.mat <- function(x,y,z,method="p",na.rm=T){
+
+ x <- c(x)
+ y <- c(y)
+ z <- as.data.frame(z)
+
+ if(dim(z)[2] == 0){
+ stop("There should be given data\n")
+ }
+
+ data <- data.frame(x,y,z)
+
+ if(na.rm == T){
+ data = na.omit(data)
+ }
+
+ xdata <- na.omit(data.frame(data[,c(1,2)]))
+ Sxx <- cov(xdata,xdata,m=method)
+
+ xzdata <- na.omit(data)
+ xdata <- data.frame(xzdata[,c(1,2)])
+ zdata <- data.frame(xzdata[,-c(1,2)])
+ Sxz <- cov(xdata,zdata,m=method)
+
+ zdata <- na.omit(data.frame(data[,-c(1,2)]))
+ Szz <- cov(zdata,zdata,m=method)
+
+ # is Szz positive definite?
+ zz.ev <- eigen(Szz)$values
+ if(min(zz.ev)[1]<0){
+ stop("\'Szz\' is not positive definite!\n")
+ }
+
+ # partial correlation
+ Sxx.z <- Sxx - Sxz %*% solve(Szz) %*% t(Sxz)
+
+ rxx.z <- cov2cor(Sxx.z)[1,2]
+
+ rxx.z
+}
+
+# By using recursive formula
+pcor.rec <- function(x,y,z,method="p",na.rm=T){
+ #
+
+ x <- c(x)
+ y <- c(y)
+ z <- as.data.frame(z)
+
+ if(dim(z)[2] == 0){
+ stop("There should be given data\n")
+ }
+
+ data <- data.frame(x,y,z)
+
+ if(na.rm == T){
+ data = na.omit(data)
+ }
+
+ # recursive formula
+ if(dim(z)[2] == 1){
+ tdata <- na.omit(data.frame(data[,1],data[,2]))
+ rxy <- cor(tdata[,1],tdata[,2],m=method)
+
+ tdata <- na.omit(data.frame(data[,1],data[,-c(1,2)]))
+ rxz <- cor(tdata[,1],tdata[,2],m=method)
+
+ tdata <- na.omit(data.frame(data[,2],data[,-c(1,2)]))
+ ryz <- cor(tdata[,1],tdata[,2],m=method)
+
+ rxy.z <- (rxy - rxz*ryz)/( sqrt(1-rxz^2)*sqrt(1-ryz^2) )
+
+ return(rxy.z)
+ }else{
+ x <- c(data[,1])
+ y <- c(data[,2])
+ z0 <- c(data[,3])
+ zc <- as.data.frame(data[,-c(1,2,3)])
+
+ rxy.zc <- pcor.rec(x,y,zc,method=method,na.rm=na.rm)
+ rxz0.zc <- pcor.rec(x,z0,zc,method=method,na.rm=na.rm)
+ ryz0.zc <- pcor.rec(y,z0,zc,method=method,na.rm=na.rm)
+
+ rxy.z <- (rxy.zc - rxz0.zc*ryz0.zc)/( sqrt(1-rxz0.zc^2)*sqrt(1-ryz0.zc^2) )
+ return(rxy.z)
+ }
+}
+""")
+
+ R_pcorr_function = rpy2.robjects.r['pcor.test']
+ R_corr_test = rpy2.robjects.r['cor.test']
+
+ primary = rpy2.robjects.FloatVector(range(len(primaryVal)))
+ for i in range(len(primaryVal)):
+ primary[i] = primaryVal[i]
+
+ control = rpy2.robjects.r.matrix(rpy2.robjects.FloatVector( range(len(controlVals)*len(controlVals[0])) ), ncol=len(controlVals))
+ for i in range(len(controlVals)):
+ for j in range(len(controlVals[0])):
+ control[i*len(controlVals[0]) + j] = controlVals[i][j]
+
+ allcorrelations = []
+
+ for targetIndex, oneTargetVals in enumerate(targetVals):
+
+ this_primary = None
+ this_control = None
+ this_target = None
+
+ if None in oneTargetVals:
+
+ goodIndex = []
+ for i in range(len(oneTargetVals)):
+ if oneTargetVals[i] != None:
+ goodIndex.append(i)
+
+ this_primary = rpy2.robjects.FloatVector(range(len(goodIndex)))
+ for i in range(len(goodIndex)):
+ this_primary[i] = primaryVal[goodIndex[i]]
+
+ this_control = rpy2.robjects.r.matrix(rpy2.robjects.FloatVector( range(len(controlVals)*len(goodIndex)) ), ncol=len(controlVals))
+ for i in range(len(controlVals)):
+ for j in range(len(goodIndex)):
+ this_control[i*len(goodIndex) + j] = controlVals[i][goodIndex[j]]
+
+ this_target = rpy2.robjects.FloatVector(range(len(goodIndex)))
+ for i in range(len(goodIndex)):
+ this_target[i] = oneTargetVals[goodIndex[i]]
+
+ else:
+ this_primary = primary
+ this_control = control
+ this_target = rpy2.robjects.FloatVector(range(len(oneTargetVals)))
+ for i in range(len(oneTargetVals)):
+ this_target[i] = oneTargetVals[i]
+
+ one_name = targetNames[targetIndex]
+ one_N = len(this_primary)
+
+ #calculate partial correlation
+ one_pc_coefficient = 'NA'
+ one_pc_p = 1
+
+ try:
+ if method == 's':
+ result = R_pcorr_function(this_primary, this_target, this_control, method='s')
+ else:
+ result = R_pcorr_function(this_primary, this_target, this_control)
+
+ #XZ: In very few cases, the returned coefficient is nan.
+ #XZ: One way to detect nan is to compare the number to itself. NaN is always != NaN
+ if result[0][0] == result[0][0]:
+ one_pc_coefficient = result[0][0]
+ #XZ: when the coefficient value is 1 (primary trait and target trait are the same),
+ #XZ: occationally, the returned p value is nan instead of 0.
+ if result[1][0] == result[1][0]:
+ one_pc_p = result[1][0]
+ elif abs(one_pc_coefficient - 1) < 0.0000001:
+ one_pc_p = 0
+ except:
+ pass
+
+ #calculate zero order correlation
+ one_corr_coefficient = 0
+ one_corr_p = 1
+
+ try:
+ if method == 's':
+ R_result = R_corr_test(this_primary, this_target, method='spearman')
+ else:
+ R_result = R_corr_test(this_primary, this_target)
+
+ one_corr_coefficient = R_result[3][0]
+ one_corr_p = R_result[2][0]
+ except:
+ pass
+
+ traitinfo = [ one_name, one_N, one_pc_coefficient, one_pc_p, one_corr_coefficient, one_corr_p ]
+
+ allcorrelations.append(traitinfo)
+
+ return allcorrelations
+ #End of function compute_partial
+
+
+ allcorrelations = []
+
+ target_trait_number = len(targetVals)
+
+ if target_trait_number < 1000:
+ allcorrelations = compute_partial ( primaryVal, controlVals, targetVals, targetNames, method )
+ else:
+ step = 1000
+ job_number = math.ceil( float(target_trait_number)/step )
+
+ job_targetVals_lists = []
+ job_targetNames_lists = []
+
+ for job_index in range( int(job_number) ):
+ starti = job_index*step
+ endi = min((job_index+1)*step, target_trait_number)
+
+ one_job_targetVals_list = []
+ one_job_targetNames_list = []
+
+ for i in range( starti, endi ):
+ one_job_targetVals_list.append( targetVals[i] )
+ one_job_targetNames_list.append( targetNames[i] )
+
+ job_targetVals_lists.append( one_job_targetVals_list )
+ job_targetNames_lists.append( one_job_targetNames_list )
+
+ ppservers = ()
+ # Creates jobserver with automatically detected number of workers
+ job_server = pp.Server(ppservers=ppservers)
+
+ jobs = []
+ results = []
+
+ for i, one_job_targetVals_list in enumerate( job_targetVals_lists ):
+ one_job_targetNames_list = job_targetNames_lists[i]
+ #pay attention to modules from outside
+ jobs.append( job_server.submit(func=compute_partial, args=( primaryVal, controlVals, one_job_targetVals_list, one_job_targetNames_list, method), depfuncs=(), modules=("rpy2.robjects",)) )
+
+ for one_job in jobs:
+ one_result = one_job()
+ results.append( one_result )
+
+ for one_result in results:
+ for one_traitinfo in one_result:
+ allcorrelations.append( one_traitinfo )
+
+ return allcorrelations
+
+
+
+#XZ, April 30, 2010: The input primaryTrait and targetTrait are instance of webqtlTrait
+#XZ: The primaryTrait and targetTrait should have executed retrieveData function
+def calZeroOrderCorr (primaryTrait, targetTrait, method='pearson'):
+
+ #primaryTrait.retrieveData()
+
+ #there is no None value in primary_val
+ primary_strain, primary_val, primary_var = primaryTrait.exportInformative()
+
+ #targetTrait.retrieveData()
+
+ #there might be None value in target_val
+ target_val = targetTrait.exportData(primary_strain, type="val")
+
+ R_primary = rpy2.robjects.FloatVector(range(len(primary_val)))
+ for i in range(len(primary_val)):
+ R_primary[i] = primary_val[i]
+
+ N = len(target_val)
+
+ if None in target_val:
+ goodIndex = []
+ for i in range(len(target_val)):
+ if target_val[i] != None:
+ goodIndex.append(i)
+
+ N = len(goodIndex)
+
+ R_primary = rpy2.robjects.FloatVector(range(len(goodIndex)))
+ for i in range(len(goodIndex)):
+ R_primary[i] = primary_val[goodIndex[i]]
+
+ R_target = rpy2.robjects.FloatVector(range(len(goodIndex)))
+ for i in range(len(goodIndex)):
+ R_target[i] = target_val[goodIndex[i]]
+
+ else:
+ R_target = rpy2.robjects.FloatVector(range(len(target_val)))
+ for i in range(len(target_val)):
+ R_target[i] = target_val[i]
+
+ R_corr_test = rpy2.robjects.r['cor.test']
+
+ if method == 'spearman':
+ R_result = R_corr_test(R_primary, R_target, method='spearman')
+ else:
+ R_result = R_corr_test(R_primary, R_target)
+
+ corr_result = []
+ corr_result.append( R_result[3][0] )
+ corr_result.append( N )
+ corr_result.append( R_result[2][0] )
+
+ return corr_result
+
+#####################################################################################
+#Input: primaryValue(list): one list of expression values of one probeSet,
+# targetValue(list): one list of expression values of one probeSet,
+# method(string): indicate correlation method ('pearson' or 'spearman')
+#Output: corr_result(list): first item is Correlation Value, second item is tissue number,
+# third item is PValue
+#Function: get correlation value,Tissue quantity ,p value result by using R;
+#Note : This function is special case since both primaryValue and targetValue are from
+#the same dataset. So the length of these two parameters is the same. They are pairs.
+#Also, in the datatable TissueProbeSetData, all Tissue values are loaded based on
+#the same tissue order
+#####################################################################################
+
+def calZeroOrderCorrForTiss (primaryValue=[], targetValue=[], method='pearson'):
+
+ R_primary = rpy2.robjects.FloatVector(range(len(primaryValue)))
+ N = len(primaryValue)
+ for i in range(len(primaryValue)):
+ R_primary[i] = primaryValue[i]
+
+ R_target = rpy2.robjects.FloatVector(range(len(targetValue)))
+ for i in range(len(targetValue)):
+ R_target[i]=targetValue[i]
+
+ R_corr_test = rpy2.robjects.r['cor.test']
+ if method =='spearman':
+ R_result = R_corr_test(R_primary, R_target, method='spearman')
+ else:
+ R_result = R_corr_test(R_primary, R_target)
+
+ corr_result =[]
+ corr_result.append( R_result[3][0])
+ corr_result.append( N )
+ corr_result.append( R_result[2][0])
+
+ return corr_result
+
+
+
+
+def batchCalTissueCorr(primaryTraitValue=[], SymbolValueDict={}, method='pearson'):
+
+ def cal_tissue_corr(primaryTraitValue, oneSymbolValueDict, method ):
+
+ oneSymbolCorrDict = {}
+ oneSymbolPvalueDict = {}
+
+ R_corr_test = rpy2.robjects.r['cor.test']
+
+ R_primary = rpy2.robjects.FloatVector(range(len(primaryTraitValue)))
+
+ for i in range(len(primaryTraitValue)):
+ R_primary[i] = primaryTraitValue[i]
+
+ for (oneTraitSymbol, oneTraitValue) in oneSymbolValueDict.iteritems():
+ R_target = rpy2.robjects.FloatVector(range(len(oneTraitValue)))
+ for i in range(len(oneTraitValue)):
+ R_target[i] = oneTraitValue[i]
+
+ if method =='spearman':
+ R_result = R_corr_test(R_primary, R_target, method='spearman')
+ else:
+ R_result = R_corr_test(R_primary, R_target)
+
+ oneSymbolCorrDict[oneTraitSymbol] = R_result[3][0]
+ oneSymbolPvalueDict[oneTraitSymbol] = R_result[2][0]
+
+ return(oneSymbolCorrDict, oneSymbolPvalueDict)
+
+
+
+ symbolCorrDict = {}
+ symbolPvalueDict = {}
+
+ items_number = len(SymbolValueDict)
+
+ if items_number <= 1000:
+ symbolCorrDict, symbolPvalueDict = cal_tissue_corr(primaryTraitValue, SymbolValueDict, method)
+ else:
+ items_list = SymbolValueDict.items()
+
+ step = 1000
+ job_number = math.ceil( float(items_number)/step )
+
+ job_oneSymbolValueDict_list = []
+
+ for job_index in range( int(job_number) ):
+ starti = job_index*step
+ endi = min((job_index+1)*step, items_number)
+
+ oneSymbolValueDict = {}
+
+ for i in range( starti, endi ):
+ one_item = items_list[i]
+ one_symbol = one_item[0]
+ one_value = one_item[1]
+ oneSymbolValueDict[one_symbol] = one_value
+
+ job_oneSymbolValueDict_list.append( oneSymbolValueDict )
+
+
+ ppservers = ()
+ # Creates jobserver with automatically detected number of workers
+ job_server = pp.Server(ppservers=ppservers)
+
+ jobs = []
+ results = []
+
+ for i, oneSymbolValueDict in enumerate( job_oneSymbolValueDict_list ):
+
+ #pay attention to modules from outside
+ jobs.append( job_server.submit(func=cal_tissue_corr, args=(primaryTraitValue, oneSymbolValueDict, method), depfuncs=(), modules=("rpy2.robjects",)) )
+
+ for one_job in jobs:
+ one_result = one_job()
+ results.append( one_result )
+
+ for one_result in results:
+ oneSymbolCorrDict, oneSymbolPvalueDict = one_result
+ symbolCorrDict.update( oneSymbolCorrDict )
+ symbolPvalueDict.update( oneSymbolPvalueDict )
+
+ return (symbolCorrDict, symbolPvalueDict)
+
+###########################################################################
+#Input: cursor, GeneNameLst (list), TissueProbeSetFreezeId
+#output: geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict (Dict)
+#function: get multi dicts for short and long label functions, and for getSymbolValuePairDict and
+# getGeneSymbolTissueValueDict to build dict to get CorrPvArray
+#Note: If there are multiple probesets for one gene, select the one with highest mean.
+###########################################################################
+def getTissueProbeSetXRefInfo(cursor=None,GeneNameLst=[],TissueProbeSetFreezeId=0):
+ Symbols =""
+ symbolList =[]
+ geneIdDict ={}
+ dataIdDict = {}
+ ChrDict = {}
+ MbDict = {}
+ descDict = {}
+ pTargetDescDict = {}
+
+ count = len(GeneNameLst)
+
+ # Added by NL 01/06/2011
+ # Note that:inner join is necessary in this query to get distinct record in one symbol group with highest mean value
+ # Duo to the limit size of TissueProbeSetFreezeId table in DB, performance of inner join is acceptable.
+ if count==0:
+ query='''
+ select t.Symbol,t.GeneId, t.DataId,t.Chr, t.Mb,t.description,t.Probe_Target_Description
+ from (
+ select Symbol, max(Mean) as maxmean
+ from TissueProbeSetXRef
+ where TissueProbeSetFreezeId=%s and Symbol!='' and Symbol Is Not Null group by Symbol)
+ as x inner join TissueProbeSetXRef as t on t.Symbol = x.Symbol and t.Mean = x.maxmean;
+ '''%TissueProbeSetFreezeId
+
+ else:
+ for i, item in enumerate(GeneNameLst):
+
+ if i == count-1:
+ Symbols += "'%s'" %item
+ else:
+ Symbols += "'%s'," %item
+
+ Symbols = "("+ Symbols+")"
+ query='''
+ select t.Symbol,t.GeneId, t.DataId,t.Chr, t.Mb,t.description,t.Probe_Target_Description
+ from (
+ select Symbol, max(Mean) as maxmean
+ from TissueProbeSetXRef
+ where TissueProbeSetFreezeId=%s and Symbol in %s group by Symbol)
+ as x inner join TissueProbeSetXRef as t on t.Symbol = x.Symbol and t.Mean = x.maxmean;
+ '''% (TissueProbeSetFreezeId,Symbols)
+
+ try:
+
+ cursor.execute(query)
+ results =cursor.fetchall()
+ resultCount = len(results)
+ # Key in all dicts is the lower-cased symbol
+ for i, item in enumerate(results):
+ symbol = item[0]
+ symbolList.append(symbol)
+
+ key =symbol.lower()
+ geneIdDict[key]=item[1]
+ dataIdDict[key]=item[2]
+ ChrDict[key]=item[3]
+ MbDict[key]=item[4]
+ descDict[key]=item[5]
+ pTargetDescDict[key]=item[6]
+
+ except:
+ symbolList = None
+ geneIdDict=None
+ dataIdDict=None
+ ChrDict=None
+ MbDict=None
+ descDict=None
+ pTargetDescDict=None
+
+ return symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict
+
+###########################################################################
+#Input: cursor, symbolList (list), dataIdDict(Dict)
+#output: symbolValuepairDict (dictionary):one dictionary of Symbol and Value Pair,
+# key is symbol, value is one list of expression values of one probeSet;
+#function: get one dictionary whose key is gene symbol and value is tissue expression data (list type).
+#Attention! All keys are lower case!
+###########################################################################
+def getSymbolValuePairDict(cursor=None,symbolList=None,dataIdDict={}):
+ symbolList = map(string.lower, symbolList)
+ symbolValuepairDict={}
+ valueList=[]
+
+ for key in symbolList:
+ if dataIdDict.has_key(key):
+ DataId = dataIdDict[key]
+
+ valueQuery = "select value from TissueProbeSetData where Id=%s" % DataId
+ try :
+ cursor.execute(valueQuery)
+ valueResults = cursor.fetchall()
+ for item in valueResults:
+ item =item[0]
+ valueList.append(item)
+ symbolValuepairDict[key] = valueList
+ valueList=[]
+ except:
+ symbolValuepairDict[key] = None
+
+ return symbolValuepairDict
+
+
+########################################################################################################
+#input: cursor, symbolList (list), dataIdDict(Dict): key is symbol
+#output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair.
+# key is symbol, value is one list of expression values of one probeSet.
+#function: wrapper function for getSymbolValuePairDict function
+# build gene symbol list if necessary, cut it into small lists if necessary,
+# then call getSymbolValuePairDict function and merge the results.
+########################################################################################################
+
+def getGeneSymbolTissueValueDict(cursor=None,symbolList=None,dataIdDict={}):
+ limitNum=1000
+ count = len(symbolList)
+
+ SymbolValuePairDict = {}
+
+ if count !=0 and count <=limitNum:
+ SymbolValuePairDict = getSymbolValuePairDict(cursor=cursor,symbolList=symbolList,dataIdDict=dataIdDict)
+
+ elif count >limitNum:
+ SymbolValuePairDict={}
+ n = count/limitNum
+ start =0
+ stop =0
+
+ for i in range(n):
+ stop =limitNum*(i+1)
+ gList1 = symbolList[start:stop]
+ PairDict1 = getSymbolValuePairDict(cursor=cursor,symbolList=gList1,dataIdDict=dataIdDict)
+ start =limitNum*(i+1)
+
+ SymbolValuePairDict.update(PairDict1)
+
+ if stop < count:
+ stop = count
+ gList2 = symbolList[start:stop]
+ PairDict2 = getSymbolValuePairDict(cursor=cursor,symbolList=gList2,dataIdDict=dataIdDict)
+ SymbolValuePairDict.update(PairDict2)
+
+ return SymbolValuePairDict
+
+########################################################################################################
+#input: cursor, GeneNameLst (list), TissueProbeSetFreezeId(int)
+#output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair.
+# key is symbol, value is one list of expression values of one probeSet.
+#function: wrapper function of getGeneSymbolTissueValueDict function
+# for CorrelationPage.py
+########################################################################################################
+
+def getGeneSymbolTissueValueDictForTrait(cursor=None,GeneNameLst=[],TissueProbeSetFreezeId=0):
+ SymbolValuePairDict={}
+ symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict = getTissueProbeSetXRefInfo(cursor=cursor,GeneNameLst=GeneNameLst,TissueProbeSetFreezeId=TissueProbeSetFreezeId)
+ if symbolList:
+ SymbolValuePairDict = getGeneSymbolTissueValueDict(cursor=cursor,symbolList=symbolList,dataIdDict=dataIdDict)
+ return SymbolValuePairDict
+
+########################################################################################################
+#Input: cursor(cursor): MySQL connnection cursor;
+# priGeneSymbolList(list): one list of gene symbol;
+# symbolValuepairDict(dictionary): one dictionary of Symbol and Value Pair,
+# key is symbol, value is one list of expression values of one probeSet;
+#Output: corrArray(array): array of Correlation Value,
+# pvArray(array): array of PValue;
+#Function: build corrArray, pvArray for display by calling calculation function:calZeroOrderCorrForTiss
+########################################################################################################
+
+def getCorrPvArray(cursor=None,priGeneSymbolList=[],symbolValuepairDict={}):
+ # setting initial value for corrArray, pvArray equal to 0
+ Num = len(priGeneSymbolList)
+
+ corrArray = [([0] * (Num))[:] for i in range(Num)]
+ pvArray = [([0] * (Num))[:] for i in range(Num)]
+ i = 0
+ for pkey in priGeneSymbolList:
+ j = 0
+ pkey = pkey.strip().lower()# key in symbolValuepairDict is low case
+ if symbolValuepairDict.has_key(pkey):
+ priValue = symbolValuepairDict[pkey]
+ for tkey in priGeneSymbolList:
+ tkey = tkey.strip().lower()# key in symbolValuepairDict is low case
+ if priValue and symbolValuepairDict.has_key(tkey):
+ tarValue = symbolValuepairDict[tkey]
+
+ if tarValue:
+ if i>j:
+ # corrArray stores Pearson Correlation values
+ # pvArray stores Pearson P-Values
+ pcorr_result =calZeroOrderCorrForTiss(primaryValue=priValue,targetValue=tarValue)
+ corrArray[i][j] =pcorr_result[0]
+ pvArray[i][j] =pcorr_result[2]
+ elif i
console.log("Found Show Outliers")
$('#show_hide_outliers').val("Hide Outliers")
console.log("Should be now Hide Outliers")
-
+
+
###
Calculate Correlations Code
###
@@ -165,6 +166,17 @@ $ ->
$('select[name=corr_method]').change(on_corr_method_change)
+ on_corr_submit = ->
+ console.log("in beginning of on_corr_submit")
+ values = $('#trait_data_form').serialize()
+ console.log("in on_corr_submit, values are:", values)
+ $.ajax "/corr_compute",
+ type: 'GET'
+ dataType: 'html'
+ data: values
+
+ $('#corr_compute').click(on_corr_submit)
+
###
End Calculate Correlations Code
###
@@ -177,8 +189,9 @@ $ ->
_.mixin(_.str.exports()); # Add string fuctions directly to underscore
$('#value_table').change(edit_data_change)
console.log("loaded")
- console.log("basic_table is:", basic_table)
- make_table()
- edit_data_change() # Set the values at the beginning
+ #console.log("basic_table is:", basic_table)
+ # Add back following two lines later
+ #make_table()
+ #edit_data_change() # Set the values at the beginning
#$("#all-mean").html('foobar8')
console.log("end")
diff --git a/wqflask/wqflask/static/new/javascript/trait_data_and_analysis.js b/wqflask/wqflask/static/new/javascript/trait_data_and_analysis.js
index 96b245ea..0de0297b 100644
--- a/wqflask/wqflask/static/new/javascript/trait_data_and_analysis.js
+++ b/wqflask/wqflask/static/new/javascript/trait_data_and_analysis.js
@@ -10,7 +10,7 @@
};
$(function() {
- var edit_data_change, hide_tabs, make_table, on_corr_method_change, process_id, show_hide_outliers, stats_mdp_change, update_stat_values;
+ var edit_data_change, hide_tabs, make_table, on_corr_method_change, on_corr_submit, process_id, show_hide_outliers, stats_mdp_change, update_stat_values;
hide_tabs = function(start) {
var x, _i, _results;
_results = [];
@@ -199,6 +199,18 @@
return $('#' + corr_method + "_r_desc").show().effect("highlight");
};
$('select[name=corr_method]').change(on_corr_method_change);
+ on_corr_submit = function() {
+ var values;
+ console.log("in beginning of on_corr_submit");
+ values = $('#trait_data_form').serialize();
+ console.log("in on_corr_submit, values are:", values);
+ return $.ajax("/corr_compute", {
+ type: 'GET',
+ dataType: 'html',
+ data: values
+ });
+ };
+ $('#corr_compute').click(on_corr_submit);
/*
End Calculate Correlations Code
*/
@@ -209,9 +221,6 @@
_.mixin(_.str.exports());
$('#value_table').change(edit_data_change);
console.log("loaded");
- console.log("basic_table is:", basic_table);
- make_table();
- edit_data_change();
return console.log("end");
});
diff --git a/wqflask/wqflask/templates/trait_data_and_analysis.html b/wqflask/wqflask/templates/trait_data_and_analysis.html
index f6917a90..a5d0e05c 100644
--- a/wqflask/wqflask/templates/trait_data_and_analysis.html
+++ b/wqflask/wqflask/templates/trait_data_and_analysis.html
@@ -8,7 +8,7 @@
-
+ |
@@ -1308,9 +1311,9 @@
-
+ -->
-->
diff --git a/wqflask/wqflask/views.py b/wqflask/wqflask/views.py
index 1ed3c1fd..114ec458 100644
--- a/wqflask/wqflask/views.py
+++ b/wqflask/wqflask/views.py
@@ -8,6 +8,7 @@ from flask import render_template, request
from wqflask import search_results
from wqflask.show_trait import show_trait_page
+from wqflask.correlation import CorrelationPage
from wqflask.dataSharing import SharingInfo, SharingInfoPage
@@ -74,7 +75,14 @@ def showDatabaseBXD():
print("showDatabaseBXD template_vars:", pf(template_vars.__dict__))
return render_template("trait_data_and_analysis.html", **template_vars.__dict__)
-
+@app.route("/corr_compute")
+def corr_compute():
+ print("In corr_compute")
+ fd = webqtlFormData.webqtlFormData(request.args)
+ print("Have fd")
+ template_vars = CorrelationPage.CorrelationPage(fd)
+ print("Made it to rendering")
+ return render_template("corr_compute.html", **template_vars.__dict__)
# Todo: Can we simplify this? -Sam
def sharing_info_page():
--
cgit v1.2.3