From fdfd2a492d11e76aa8179d0dc799a8b1d45399bb Mon Sep 17 00:00:00 2001 From: zsloan Date: Tue, 10 May 2016 23:27:36 +0000 Subject: Correlation successfully uses materialized views and parallel processing, but for some reason is taking an immense amount of time so need to troubleshoot that Changed order of mapping options to display Interval Mapping first Changed some links to no longer open in new tab/window --- wqflask/utility/webqtlUtil.py | 2 +- wqflask/wqflask/correlation/show_corr_results.py | 546 ++++++++++++++------- .../wqflask/static/new/javascript/show_trait.js | 6 + wqflask/wqflask/templates/show_trait.html | 2 +- wqflask/wqflask/templates/show_trait_details.html | 23 +- .../templates/show_trait_mapping_tools.html | 172 +++---- 6 files changed, 467 insertions(+), 284 deletions(-) mode change 100755 => 100644 wqflask/wqflask/correlation/show_corr_results.py (limited to 'wqflask') diff --git a/wqflask/utility/webqtlUtil.py b/wqflask/utility/webqtlUtil.py index f842dde0..1108614b 100755 --- a/wqflask/utility/webqtlUtil.py +++ b/wqflask/utility/webqtlUtil.py @@ -509,7 +509,7 @@ def calCorrelationRank(xVals,yVals,N): j = 0 for i in range(len(xVals)): - if xVals[i]!= None and yVals[i]!= None: + if (xVals[i]!= None and yVals[i]!= None) and (xVals[i] != "None" and yVals[i] != "None"): XX.append((j,xVals[i])) YY.append((j,yVals[i])) j = j+1 diff --git a/wqflask/wqflask/correlation/show_corr_results.py b/wqflask/wqflask/correlation/show_corr_results.py old mode 100755 new mode 100644 index 98596ca4..0795f113 --- a/wqflask/wqflask/correlation/show_corr_results.py +++ b/wqflask/wqflask/correlation/show_corr_results.py @@ -50,6 +50,7 @@ from dbFunction import webqtlDatabaseFunction import utility.webqtlUtil #this is for parallel computing only. from wqflask.correlation import correlation_functions from utility.benchmark import Bench +import utility.webqtlUtil from MySQLdb import escape_string as escape @@ -159,6 +160,9 @@ class CorrelationResults(object): self.correlation_data = {} + db_filename = self.getFileName(target_db_name = self.target_dataset.name) + cache_available = db_filename in os.listdir(webqtlConfig.TEXTDIR) + if self.corr_type == "tissue": self.trait_symbol_dict = self.dataset.retrieve_genes("Symbol") @@ -174,9 +178,25 @@ class CorrelationResults(object): self.get_sample_r_and_p_values(trait, self.target_dataset.trait_data[trait]) elif self.corr_type == "sample": - # print("self.target_dataset.trait_data: %d" % len(self.target_dataset.trait_data)) - for trait, values in self.target_dataset.trait_data.iteritems(): - self.get_sample_r_and_p_values(trait, values) + if self.dataset.type == "ProbeSet" and cache_available: + dataset_file = open(webqtlConfig.TEXTDIR+db_filename,'r') + + #XZ, 01/08/2009: read the first line + line = dataset_file.readline() + dataset_strains = webqtlUtil.readLineCSV(line)[1:] + + self.this_trait_vals = [] + for item in dataset_strains: + if item in self.sample_data: + self.this_trait_vals.append(self.sample_data[item]) + else: + self.this_trait_vals.append("None") + num_overlap = len(self.this_trait_vals) + + self.do_parallel_correlation(db_filename, num_overlap) + else: + for trait, values in self.target_dataset.trait_data.iteritems(): + self.get_sample_r_and_p_values(trait, values) self.correlation_data = collections.OrderedDict(sorted(self.correlation_data.items(), key=lambda t: -abs(t[1][0]))) @@ -308,7 +328,7 @@ class CorrelationResults(object): #traitList = self.correlate() - #_log.info("Done doing correlation calculation") + #print("Done doing correlation calculation") ############################################################################################################################################ @@ -521,27 +541,125 @@ class CorrelationResults(object): """ - # print("len(self.sample_data):", len(self.sample_data)) - - this_trait_vals = [] + self.this_trait_vals = [] target_vals = [] for index, sample in enumerate(self.target_dataset.samplelist): if sample in self.sample_data: sample_value = self.sample_data[sample] target_sample_value = target_samples[index] - this_trait_vals.append(sample_value) + self.this_trait_vals.append(sample_value) target_vals.append(target_sample_value) - this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values( - this_trait_vals, target_vals) + self.this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values(self.this_trait_vals, target_vals) #ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/ if self.corr_method == 'pearson': - sample_r, sample_p = scipy.stats.pearsonr(this_trait_vals, target_vals) + sample_r, sample_p = scipy.stats.pearsonr(self.this_trait_vals, target_vals) else: - sample_r, sample_p = scipy.stats.spearmanr(this_trait_vals, target_vals) + sample_r, sample_p = scipy.stats.spearmanr(self.this_trait_vals, target_vals) self.correlation_data[trait] = [sample_r, sample_p, num_overlap] + + + """ + correlations = [] + + #XZ: Use the fast method only for probeset dataset, and this dataset must have been created. + #XZ: Otherwise, use original method + #print("Entering correlation") + + #db_filename = self.getFileName(target_db_name=self.target_db_name) + # + #cache_available = db_filename in os.listdir(webqtlConfig.TEXTDIR) + + # If the cache file exists, do a cached correlation for probeset data + if self.dataset.type == "ProbeSet": +# if self.method in [METHOD_SAMPLE_PEARSON, METHOD_SAMPLE_RANK] and cache_available: +# traits = do_parallel_correlation() +# +# else: + + traits = self.get_traits(self.vals) + + for trait in traits: + trait.calculate_correlation(vals, self.method) + + self.record_count = len(traits) #ZS: This isn't a good way to get this value, so I need to change it later + + #XZ, 3/31/2010: Theoretically, we should create one function 'comTissueCorr' + #to compare each trait by their tissue corr p values. + #But because the tissue corr p values are generated by permutation test, + #the top ones always have p value 0. So comparing p values actually does nothing. + #In addition, for the tissue data in our database, the N is always the same. + #So it's safe to compare with tissue corr statistic value. + #That's the same as literature corr. + #if self.method in [METHOD_LIT, METHOD_TISSUE_PEARSON, METHOD_TISSUE_RANK] and self.gene_id: + # traits.sort(webqtlUtil.cmpLitCorr) + #else: + #if self.method in TISSUE_METHODS: + # sort(traits, key=lambda A: math.fabs(A.tissue_corr)) + #elif self.method == METHOD_LIT: + # traits.sort(traits, key=lambda A: math.fabs(A.lit_corr)) + #else: + traits = sortTraitCorrelations(traits, self.method) + + # Strip to the top N correlations + traits = traits[:min(self.returnNumber, len(traits))] + + addLiteratureCorr = False + addTissueCorr = False + + trait_list = [] + for trait in traits: + db_trait = webqtlTrait(db=self.db, name=trait.name, cursor=self.cursor) + db_trait.retrieveInfo( QTL='Yes' ) + + db_trait.Name = trait.name + db_trait.corr = trait.correlation + db_trait.nOverlap = trait.overlap + db_trait.corrPValue = trait.p_value + + # NL, 07/19/2010 + # js function changed, add a new parameter rankOrder for js function 'showTissueCorrPlot' + db_trait.RANK_ORDER = self.RANK_ORDERS[self.method] + + #XZ, 26/09/2008: Method is 4 or 5. Have fetched tissue corr, but no literature correlation yet. + if self.method in TISSUE_METHODS: + db_trait.tissueCorr = trait.tissue_corr + db_trait.tissuePValue = trait.p_tissue + addTissueCorr = True + + + #XZ, 26/09/2008: Method is 3, Have fetched literature corr, but no tissue corr yet. + elif self.method == METHOD_LIT: + db_trait.LCorr = trait.lit_corr + db_trait.mouse_geneid = self.translateToMouseGeneID(self.species, db_trait.geneid) + addLiteratureCorr = True + + #XZ, 26/09/2008: Method is 1 or 2. Have NOT fetched literature corr and tissue corr yet. + # Phenotype data will not have geneid, and neither will some probes + # we need to handle this because we will get an attribute error + else: + if self.input_trait_mouse_gene_id and self.db.type=="ProbeSet": + addLiteratureCorr = True + if self.trait_symbol and self.db.type=="ProbeSet": + addTissueCorr = True + + trait_list.append(db_trait) + + if addLiteratureCorr: + trait_list = self.getLiteratureCorrelationByList(self.input_trait_mouse_gene_id, + self.species, trait_list) + if addTissueCorr: + trait_list = self.getTissueCorrelationByList( + primaryTraitSymbol = self.trait_symbol, + traitList = trait_list, + TissueProbeSetFreezeId = TISSUE_MOUSE_DB, + method=self.method) + + return trait_list + """ + def do_tissue_corr_for_all_traits_2(self): """Comments Possibly Out of Date!!!!! @@ -670,38 +788,6 @@ class CorrelationResults(object): # except: return False - def get_all_dataset_data(self): - - """ - SELECT ProbeSet.Name, T128.value, T129.value, T130.value, T131.value, T132.value, T134.value, T135.value, T138.value, T139.value, T140.value, T141.value, T142.value, T144 - .value, T145.value, T147.value, T148.value, T149.value, T487.value, T919.value, T920.value, T922.value - FROM (ProbeSet, ProbeSetXRef, ProbeSetFreeze) - left join ProbeSetData as T128 on T128.Id = ProbeSetXRef.DataId and T128.StrainId=128 - left join ProbeSetData as T129 on T129.Id = ProbeSetXRef.DataId and T129.StrainId=129 - left join ProbeSetData as T130 on T130.Id = ProbeSetXRef.DataId and T130.StrainId=130 - left join ProbeSetData as T131 on T131.Id = ProbeSetXRef.DataId and T131.StrainId=131 - left join ProbeSetData as T132 on T132.Id = ProbeSetXRef.DataId and T132.StrainId=132 - left join ProbeSetData as T134 on T134.Id = ProbeSetXRef.DataId and T134.StrainId=134 - left join ProbeSetData as T135 on T135.Id = ProbeSetXRef.DataId and T135.StrainId=135 - left join ProbeSetData as T138 on T138.Id = ProbeSetXRef.DataId and T138.StrainId=138 - left join ProbeSetData as T139 on T139.Id = ProbeSetXRef.DataId and T139.StrainId=139 - left join ProbeSetData as T140 on T140.Id = ProbeSetXRef.DataId and T140.StrainId=140 - left join ProbeSetData as T141 on T141.Id = ProbeSetXRef.DataId and T141.StrainId=141 - left join ProbeSetData as T142 on T142.Id = ProbeSetXRef.DataId and T142.StrainId=142 - left join ProbeSetData as T144 on T144.Id = ProbeSetXRef.DataId and T144.StrainId=144 - left join ProbeSetData as T145 on T145.Id = ProbeSetXRef.DataId and T145.StrainId=145 - left join ProbeSetData as T147 on T147.Id = ProbeSetXRef.DataId and T147.StrainId=147 - left join ProbeSetData as T148 on T148.Id = ProbeSetXRef.DataId and T148.StrainId=148 - left join ProbeSetData as T149 on T149.Id = ProbeSetXRef.DataId and T149.StrainId=149 - left join ProbeSetData as T487 on T487.Id = ProbeSetXRef.DataId and T487.StrainId=487 - left join ProbeSetData as T919 on T919.Id = ProbeSetXRef.DataId and T919.StrainId=919 - left join ProbeSetData as T920 on T920.Id = ProbeSetXRef.DataId and T920.StrainId=920 - left join ProbeSetData as T922 on T922.Id = ProbeSetXRef.DataId and T922.StrainId=922 - WHERE ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id and - ProbeSetFreeze.Name = 'HC_M2_0606_P' and - ProbeSet.Id = ProbeSetXRef.ProbeSetId order by ProbeSet.Id - """ - def process_samples(self, start_vars, sample_names, excluded_samples=None): if not excluded_samples: excluded_samples = () @@ -990,59 +1076,7 @@ class CorrelationResults(object): totalTraits = len(traits) #XZ, 09/18/2008: total trait number return traits - - - def do_parallel_correlation(self): - _log.info("Invoking parallel computing") - input_line_list = datasetFile.readlines() - _log.info("Read lines from the file") - all_line_number = len(input_line_list) - - step = 1000 - job_number = math.ceil( float(all_line_number)/step ) - - job_input_lists = [] - - _log.info("Configuring jobs") - - for job_index in range( int(job_number) ): - starti = job_index*step - endi = min((job_index+1)*step, all_line_number) - - one_job_input_list = [] - - for i in range( starti, endi ): - one_job_input_list.append( input_line_list[i] ) - - job_input_lists.append( one_job_input_list ) - - _log.info("Creating pp servers") - - ppservers = () - # Creates jobserver with automatically detected number of workers - job_server = pp.Server(ppservers=ppservers) - - _log.info("Done creating servers") - - jobs = [] - results = [] - - _log.info("Starting parallel computation, submitting jobs") - for one_job_input_list in job_input_lists: #pay attention to modules from outside - jobs.append( job_server.submit(func=compute_corr, args=(nnCorr, _newvals, one_job_input_list, self.method), depfuncs=(), modules=("utility.webqtlUtil",)) ) - _log.info("Done submitting jobs") - - for one_job in jobs: - one_result = one_job() - results.append( one_result ) - - _log.info("Acquiring results") - - for one_result in results: - for one_traitinfo in one_result: - allcorrelations.append( one_traitinfo ) - - _log.info("Appending the results") + def calculate_corr_for_all_tissues(self, tissue_dataset_id=None): symbol_corr_dict = {} @@ -1067,10 +1101,7 @@ class CorrelationResults(object): # SymbolValueDict) return (symbolCorrDict, symbolPvalueDict) - datasetFile.close() - totalTraits = len(allcorrelations) - _log.info("Done correlating using the fast method") - + def correlate(self): self.correlation_data = collections.defaultdict(list) @@ -1085,107 +1116,254 @@ class CorrelationResults(object): values_2.append(target_value) correlation = calCorrelation(values_1, values_2) self.correlation_data[trait] = correlation + + def getFileName(self, target_db_name): ### dcrowell August 2008 + """Returns the name of the reference database file with which correlations are calculated. + Takes argument cursor which is a cursor object of any instance of a subclass of templatePage + Used by correlationPage""" + + dataset_id = str(self.target_dataset.id) + dataset_fullname = self.target_dataset.fullname.replace(' ','_') + dataset_fullname = dataset_fullname.replace('/','_') + FileName = 'ProbeSetFreezeId_' + dataset_id + '_FullName_' + dataset_fullname + '.txt' - """ - correlations = [] - - #XZ: Use the fast method only for probeset dataset, and this dataset must have been created. - #XZ: Otherwise, use original method - #_log.info("Entering correlation") - - #db_filename = self.getFileName(target_db_name=self.target_db_name) - # - #cache_available = db_filename in os.listdir(webqtlConfig.TEXTDIR) - - # If the cache file exists, do a cached correlation for probeset data - if self.dataset.type == "ProbeSet": -# if self.method in [METHOD_SAMPLE_PEARSON, METHOD_SAMPLE_RANK] and cache_available: -# traits = do_parallel_correlation() -# -# else: - - traits = self.get_traits(self.vals) + return FileName + + def do_parallel_correlation(self, db_filename, num_overlap): + + #XZ, 01/14/2009: This method is for parallel computing only. + #XZ: It is supposed to be called when "Genetic Correlation, Pearson's r" (method 1) + #XZ: or "Genetic Correlation, Spearman's rho" (method 2) is selected + def compute_corr(input_nnCorr, input_trait, input_list, corr_method): + + import math + import reaper + + def calCorrelation(dbdata,userdata,N): + X = [] + Y = [] + for i in range(N): + if (dbdata[i] != None and userdata[i] != None) and (dbdata[i] != "None" and userdata[i] != "None"): + X.append(float(dbdata[i])) + Y.append(float(userdata[i])) + NN = len(X) + if NN <6: + return (0.0,NN) + sx = reduce(lambda x,y:x+y,X,0.0) + sy = reduce(lambda x,y:x+y,Y,0.0) + meanx = sx/NN + meany = sy/NN + xyd = 0.0 + sxd = 0.0 + syd = 0.0 + for i in range(NN): + xyd += (X[i] - meanx)*(Y[i]-meany) + sxd += (X[i] - meanx)*(X[i] - meanx) + syd += (Y[i] - meany)*(Y[i] - meany) + try: + corr = xyd/(math.sqrt(sxd)*math.sqrt(syd)) + except: + corr = 0 + return (corr,NN) + + def calCorrelationRank(xVals,yVals,N): + """ + Calculated Spearman Ranked Correlation. The algorithm works + by setting all tied ranks to the average of those ranks (for + example, if ranks 5-10 all have the same value, each will be set + to rank 7.5). + """ + + XX = [] + YY = [] + j = 0 + + for i in range(len(xVals)): + if (xVals[i]!= None and yVals[i]!= None) and (xVals[i] != "None" and yVals[i] != "None"): + XX.append((j,float(xVals[i]))) + YY.append((j,float(yVals[i]))) + j = j+1 + + NN = len(XX) + if NN <6: + return (0.0,NN) + XX.sort(cmpOrder2) + YY.sort(cmpOrder2) + X = [0]*NN + Y = [0]*NN + + j = 1 + rank = 0.0 + t = 0.0 + sx = 0.0 + + while j < NN: + + if XX[j][1] != XX[j-1][1]: + X[XX[j-1][0]] = j + j = j+1 - for trait in traits: - trait.calculate_correlation(vals, self.method) + else: + jt = j+1 + ji = j + for jt in range(j+1, NN): + if (XX[jt][1] != XX[j-1][1]): + break + rank = 0.5*(j+jt) + for ji in range(j-1, jt): + X[XX[ji][0]] = rank + t = jt-j + sx = sx + (t*t*t-t) + if (jt == NN-1): + if (XX[jt][1] == XX[j-1][1]): + X[XX[NN-1][0]] = rank + j = jt+1 + + if j == NN: + if X[XX[NN-1][0]] == 0: + X[XX[NN-1][0]] = NN + + j = 1 + rank = 0.0 + t = 0.0 + sy = 0.0 + + while j < NN: + + if YY[j][1] != YY[j-1][1]: + Y[YY[j-1][0]] = j + j = j+1 + else: + jt = j+1 + ji = j + for jt in range(j+1, NN): + if (YY[jt][1] != YY[j-1][1]): + break + rank = 0.5*(j+jt) + for ji in range(j-1, jt): + Y[YY[ji][0]] = rank + t = jt - j + sy = sy + (t*t*t-t) + if (jt == NN-1): + if (YY[jt][1] == YY[j-1][1]): + Y[YY[NN-1][0]] = rank + j = jt+1 + + if j == NN: + if Y[YY[NN-1][0]] == 0: + Y[YY[NN-1][0]] = NN + + D = 0.0 + + for i in range(NN): + D += (X[i]-Y[i])*(X[i]-Y[i]) + + fac = (1.0 -sx/(NN*NN*NN-NN))*(1.0-sy/(NN*NN*NN-NN)) + + return ((1-(6.0/(NN*NN*NN-NN))*(D+(sx+sy)/12.0))/math.sqrt(fac),NN) + + # allcorrelations = [] + + correlation_data = {} + for i, line in enumerate(input_list): + if i == 0: + continue + tokens = line.split('","') + tokens[-1] = tokens[-1][:-2] #remove the last " + tokens[0] = tokens[0][1:] #remove the first " + + traitdataName = tokens[0] + database_trait = tokens[1:] + + #print("database_trait:", database_trait) + + #ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/ + # if corr_method == 'pearson': + # sample_r, sample_p = scipy.stats.pearsonr(input_trait, database_trait) + # else: + # sample_r, sample_p = scipy.stats.spearmanr(input_trait, database_trait) + + if corr_method == "pearson": #XZ: Pearson's r + sample_r, nOverlap = calCorrelation(input_trait, database_trait, input_nnCorr) + else: #XZ: Spearman's rho + sample_r, nOverlap = calCorrelationRank(input_trait, database_trait, input_nnCorr) + + #XZ: calculate corrPValue + if nOverlap < 3: + sample_p = 1.0 + else: + if abs(sample_r) >= 1.0: + sample_p = 0.0 + else: + z_value = 0.5*math.log((1.0+sample_r)/(1.0-sample_r)) + z_value = z_value*math.sqrt(nOverlap-3) + sample_p = 2.0*(1.0 - reaper.normp(abs(z_value))) + + correlation_data[traitdataName] = [sample_r, sample_p, nOverlap] + + # traitinfo = [traitdataName, sample_r, nOverlap] + # allcorrelations.append(traitinfo) - self.record_count = len(traits) #ZS: This isn't a good way to get this value, so I need to change it later + return correlation_data + # return allcorrelations + + + datasetFile = open(webqtlConfig.TEXTDIR+db_filename,'r') + + print("Invoking parallel computing") + input_line_list = datasetFile.readlines() + print("Read lines from the file") + all_line_number = len(input_line_list) - #XZ, 3/31/2010: Theoretically, we should create one function 'comTissueCorr' - #to compare each trait by their tissue corr p values. - #But because the tissue corr p values are generated by permutation test, - #the top ones always have p value 0. So comparing p values actually does nothing. - #In addition, for the tissue data in our database, the N is always the same. - #So it's safe to compare with tissue corr statistic value. - #That's the same as literature corr. - #if self.method in [METHOD_LIT, METHOD_TISSUE_PEARSON, METHOD_TISSUE_RANK] and self.gene_id: - # traits.sort(webqtlUtil.cmpLitCorr) - #else: - #if self.method in TISSUE_METHODS: - # sort(traits, key=lambda A: math.fabs(A.tissue_corr)) - #elif self.method == METHOD_LIT: - # traits.sort(traits, key=lambda A: math.fabs(A.lit_corr)) - #else: - traits = sortTraitCorrelations(traits, self.method) + step = 1000 + job_number = math.ceil( float(all_line_number)/step ) - # Strip to the top N correlations - traits = traits[:min(self.returnNumber, len(traits))] + print("JOB NUMBER", job_number) + + job_input_lists = [] - addLiteratureCorr = False - addTissueCorr = False + print("Configuring jobs") - trait_list = [] - for trait in traits: - db_trait = webqtlTrait(db=self.db, name=trait.name, cursor=self.cursor) - db_trait.retrieveInfo( QTL='Yes' ) + for job_index in range( int(job_number) ): + starti = job_index*step + endi = min((job_index+1)*step, all_line_number) - db_trait.Name = trait.name - db_trait.corr = trait.correlation - db_trait.nOverlap = trait.overlap - db_trait.corrPValue = trait.p_value + one_job_input_list = [] - # NL, 07/19/2010 - # js function changed, add a new parameter rankOrder for js function 'showTissueCorrPlot' - db_trait.RANK_ORDER = self.RANK_ORDERS[self.method] + for i in range( starti, endi ): + one_job_input_list.append( input_line_list[i] ) - #XZ, 26/09/2008: Method is 4 or 5. Have fetched tissue corr, but no literature correlation yet. - if self.method in TISSUE_METHODS: - db_trait.tissueCorr = trait.tissue_corr - db_trait.tissuePValue = trait.p_tissue - addTissueCorr = True + job_input_lists.append( one_job_input_list ) + print("Creating pp servers") - #XZ, 26/09/2008: Method is 3, Have fetched literature corr, but no tissue corr yet. - elif self.method == METHOD_LIT: - db_trait.LCorr = trait.lit_corr - db_trait.mouse_geneid = self.translateToMouseGeneID(self.species, db_trait.geneid) - addLiteratureCorr = True + ppservers = () + # Creates jobserver with automatically detected number of workers + job_server = pp.Server(ppservers=ppservers) - #XZ, 26/09/2008: Method is 1 or 2. Have NOT fetched literature corr and tissue corr yet. - # Phenotype data will not have geneid, and neither will some probes - # we need to handle this because we will get an attribute error - else: - if self.input_trait_mouse_gene_id and self.db.type=="ProbeSet": - addLiteratureCorr = True - if self.trait_symbol and self.db.type=="ProbeSet": - addTissueCorr = True + print("Done creating servers") - trait_list.append(db_trait) + jobs = [] + results = [] - if addLiteratureCorr: - trait_list = self.getLiteratureCorrelationByList(self.input_trait_mouse_gene_id, - self.species, trait_list) - if addTissueCorr: - trait_list = self.getTissueCorrelationByList( - primaryTraitSymbol = self.trait_symbol, - traitList = trait_list, - TissueProbeSetFreezeId = TISSUE_MOUSE_DB, - method=self.method) + print("Starting parallel computation, submitting jobs") + for one_job_input_list in job_input_lists: #pay attention to modules from outside + jobs.append( job_server.submit(func=compute_corr, args=(num_overlap, self.this_trait_vals, one_job_input_list, self.corr_method), depfuncs=(), modules=("webqtlUtil",)) ) + print("Done submitting jobs") - return trait_list - """ + for one_job in jobs: + one_result = one_job() + self.correlation_data.update(one_result) + # one_result = one_job() + # results.append( one_result ) + #print("CORRELATION DATA:", self.correlation_data) + + # print("Acquiring results") + # for one_result in results: + # for one_traitinfo in one_result: + # allcorrelations.append( one_traitinfo ) diff --git a/wqflask/wqflask/static/new/javascript/show_trait.js b/wqflask/wqflask/static/new/javascript/show_trait.js index 2fa77ae0..5d0fa589 100644 --- a/wqflask/wqflask/static/new/javascript/show_trait.js +++ b/wqflask/wqflask/static/new/javascript/show_trait.js @@ -313,6 +313,12 @@ return $("#trait_data_form").submit(); }; + submit_corr = function(){ + var url; + url = "/corr_compute"; + return submit_special(url); + }; + $(".corr_compute").on("click", (function(_this) { return function() { var url; diff --git a/wqflask/wqflask/templates/show_trait.html b/wqflask/wqflask/templates/show_trait.html index 64638fc7..5e2dc6fa 100755 --- a/wqflask/wqflask/templates/show_trait.html +++ b/wqflask/wqflask/templates/show_trait.html @@ -29,7 +29,7 @@

{{ this_trait.description_fmt }}

-
diff --git a/wqflask/wqflask/templates/show_trait_details.html b/wqflask/wqflask/templates/show_trait_details.html index 95a3b967..d5fb0cf2 100755 --- a/wqflask/wqflask/templates/show_trait_details.html +++ b/wqflask/wqflask/templates/show_trait_details.html @@ -35,8 +35,7 @@ Target Score - + BLAT Specificity : {{ "%0.3f" | format(this_trait.probe_set_specificity|float) }} @@ -51,25 +50,25 @@ Resource Links {% if this_trait.geneid != None %} - + Gene    {% endif %} {% if this_trait.omim != None %} - + OMIM    {% endif %} {% if this_trait.genbankid != None %} - + GenBank    {% endif %} {% if this_trait.symbol != None %} - + Genotation    @@ -87,40 +86,40 @@ {% if this_trait.dataset.type == 'ProbeSet' %} {% if this_trait.symbol != None %} - + {% endif %} {% if UCSC_BLAT_URL != "" %} - + {% endif %} {% if this_trait.symbol != None %} - + - + {% endif %} {% if UTHSC_BLAT_URL != "" %} - + {% endif %} {% if show_probes == "True" %} - + diff --git a/wqflask/wqflask/templates/show_trait_mapping_tools.html b/wqflask/wqflask/templates/show_trait_mapping_tools.html index 067dfc67..3d9c2521 100755 --- a/wqflask/wqflask/templates/show_trait_mapping_tools.html +++ b/wqflask/wqflask/templates/show_trait_mapping_tools.html @@ -6,13 +6,13 @@