aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask')
-rwxr-xr-xwqflask/base/data_set.py16
-rwxr-xr-xwqflask/wqflask/marker_regression/marker_regression.py159
-rw-r--r--wqflask/wqflask/my_pylmm/data/genofile_parser.py22
-rwxr-xr-x[-rw-r--r--]wqflask/wqflask/my_pylmm/pyLMM/lmm.py110
-rw-r--r--wqflask/wqflask/my_pylmm/run_pylmm.py77
-rw-r--r--wqflask/wqflask/static/new/css/bar_chart.css1
-rw-r--r--wqflask/wqflask/static/new/css/marker_regression.css9
-rw-r--r--wqflask/wqflask/static/new/javascript/bar_chart.coffee157
-rw-r--r--wqflask/wqflask/static/new/javascript/bar_chart.js80
-rw-r--r--wqflask/wqflask/static/new/javascript/chr_manhattan_plot.coffee211
-rw-r--r--wqflask/wqflask/static/new/javascript/chr_manhattan_plot.js206
-rw-r--r--wqflask/wqflask/static/new/javascript/histogram.coffee106
-rw-r--r--wqflask/wqflask/static/new/javascript/histogram.js118
-rw-r--r--wqflask/wqflask/static/new/javascript/marker_regression.coffee688
-rw-r--r--wqflask/wqflask/static/new/javascript/marker_regression.js582
-rw-r--r--wqflask/wqflask/static/new/javascript/show_trait.coffee21
-rw-r--r--wqflask/wqflask/static/new/javascript/show_trait.js9
-rw-r--r--wqflask/wqflask/static/new/packages/DataTables/js/dataTables.naturalSort.js56
-rw-r--r--wqflask/wqflask/templates/index_page.html6
-rw-r--r--wqflask/wqflask/templates/interval_mapping.html1
-rw-r--r--wqflask/wqflask/templates/marker_regression.html29
-rw-r--r--wqflask/wqflask/templates/show_trait.html40
-rw-r--r--wqflask/wqflask/templates/show_trait_edit_data.html132
-rw-r--r--wqflask/wqflask/templates/show_trait_mapping_tools.html2
-rw-r--r--wqflask/wqflask/templates/show_trait_statistics_new.html18
-rw-r--r--wqflask/wqflask/views.py7
26 files changed, 2067 insertions, 796 deletions
diff --git a/wqflask/base/data_set.py b/wqflask/base/data_set.py
index fbe78d5d..3deaa655 100755
--- a/wqflask/base/data_set.py
+++ b/wqflask/base/data_set.py
@@ -168,13 +168,13 @@ class Markers(object):
for marker, p_value in itertools.izip(self.markers, p_values):
marker['p_value'] = p_value
- if math.isnan(marker['p_value']):
- print("p_value is:", marker['p_value'])
- marker['lod_score'] = -math.log10(marker['p_value'])
- #Using -log(p) for the LRS; need to ask Rob how he wants to get LRS from p-values
- marker['lrs_value'] = -math.log10(marker['p_value']) * 4.61
-
-
+ if math.isnan(marker['p_value']) or marker['p_value'] <= 0:
+ marker['lod_score'] = 0
+ marker['lrs_value'] = 0
+ else:
+ marker['lod_score'] = -math.log10(marker['p_value'])
+ #Using -log(p) for the LRS; need to ask Rob how he wants to get LRS from p-values
+ marker['lrs_value'] = -math.log10(marker['p_value']) * 4.61
class HumanMarkers(Markers):
@@ -184,6 +184,7 @@ class HumanMarkers(Markers):
self.markers = []
for line in marker_data_fh:
splat = line.strip().split()
+ #print("splat:", splat)
marker = {}
marker['chr'] = int(splat[0])
marker['name'] = splat[1]
@@ -203,6 +204,7 @@ class HumanMarkers(Markers):
# #Using -log(p) for the LRS; need to ask Rob how he wants to get LRS from p-values
# marker['lrs_value'] = -math.log10(marker['p_value']) * 4.61
+ print("p_values2:", p_values)
super(HumanMarkers, self).add_pvalues(p_values)
with Bench("deleting markers"):
diff --git a/wqflask/wqflask/marker_regression/marker_regression.py b/wqflask/wqflask/marker_regression/marker_regression.py
index 006c586b..0dd55729 100755
--- a/wqflask/wqflask/marker_regression/marker_regression.py
+++ b/wqflask/wqflask/marker_regression/marker_regression.py
@@ -7,16 +7,20 @@ from pprint import pformat as pf
import string
import sys
+import datetime
import os
import collections
+import uuid
import numpy as np
from scipy import linalg
-import simplejson as json
+import cPickle as pickle
-#from redis import Redis
+import simplejson as json
+from redis import Redis
+Redis = Redis()
from base.trait import GeneralTrait
from base import data_set
@@ -38,7 +42,7 @@ class MarkerRegression(object):
helper_functions.get_species_dataset_trait(self, start_vars)
- tempdata = temp_data.TempData(temp_uuid)
+ #tempdata = temp_data.TempData(temp_uuid)
self.samples = [] # Want only ones with values
self.vals = []
@@ -48,7 +52,9 @@ class MarkerRegression(object):
self.samples.append(str(sample))
self.vals.append(value)
- self.gen_data(tempdata)
+ #self.qtl_results = self.gen_data(tempdata)
+ self.qtl_results = self.gen_data(str(temp_uuid))
+ self.lod_cutoff = self.get_lod_score_cutoff()
#Get chromosome lengths for drawing the manhattan plot
chromosome_mb_lengths = {}
@@ -61,15 +67,23 @@ class MarkerRegression(object):
)
- def gen_data(self, tempdata):
+ #def gen_data(self, tempdata):
+ def gen_data(self, temp_uuid):
"""Generates p-values for each marker"""
self.dataset.group.get_markers()
pheno_vector = np.array([val == "x" and np.nan or float(val) for val in self.vals])
+ #lmm_uuid = str(uuid.uuid4())
+
+ key = "pylmm:input:" + temp_uuid
+ print("key is:", pf(key))
+ #with Bench("Loading cache"):
+ # result = Redis.get(key)
+
if self.dataset.group.species == "human":
- p_values, t_stats = self.gen_human_results(pheno_vector, tempdata)
+ p_values, t_stats = self.gen_human_results(pheno_vector, key, temp_uuid)
else:
genotype_data = [marker['genotypes'] for marker in self.dataset.group.markers.markers]
@@ -77,24 +91,66 @@ class MarkerRegression(object):
trimmed_genotype_data = self.trim_genotypes(genotype_data, no_val_samples)
genotype_matrix = np.array(trimmed_genotype_data).T
+
+ #print("pheno_vector: ", pf(pheno_vector))
+ #print("genotype_matrix: ", pf(genotype_matrix))
+ #print("genotype_matrix.shape: ", pf(genotype_matrix.shape))
+
+ #params = {"pheno_vector": pheno_vector,
+ # "genotype_matrix": genotype_matrix,
+ # "restricted_max_likelihood": True,
+ # "refit": False,
+ # "temp_data": tempdata}
- print("pheno_vector: ", pf(pheno_vector))
- print("genotype_matrix: ", pf(genotype_matrix))
- print("genotype_matrix.shape: ", pf(genotype_matrix.shape))
+ params = dict(pheno_vector = pheno_vector.tolist(),
+ genotype_matrix = genotype_matrix.tolist(),
+ restricted_max_likelihood = True,
+ refit = False,
+ temp_uuid = temp_uuid,
+
+ # meta data
+ timestamp = datetime.datetime.now().isoformat(),
+ )
- t_stats, p_values = lmm.run(
- pheno_vector,
- genotype_matrix,
- restricted_max_likelihood=True,
- refit=False,
- temp_data=tempdata
- )
-
+ json_params = json.dumps(params)
+ print("json_params:", json_params)
+ Redis.set(key, json_params)
+ Redis.expire(key, 60*60)
+ print("before printing command")
+
+ command = 'python /home/zas1024/gene/wqflask/wqflask/my_pylmm/pyLMM/lmm.py --key {} --species {}'.format(key,
+ "other")
+ print("command is:", command)
+ print("after printing command")
+
+ os.system(command)
+
+ #t_stats, p_values = lmm.run(key)
+ #lmm.run(key)
+
+ json_results = Redis.blpop("pylmm:results:" + temp_uuid, 45*60)
+ results = json.loads(json_results[1])
+ p_values = results['p_values']
+ t_stats = results['t_stats']
+
+ #t_stats, p_values = lmm.run(
+ # pheno_vector,
+ # genotype_matrix,
+ # restricted_max_likelihood=True,
+ # refit=False,
+ # temp_data=tempdata
+ #)
+ #print("p_values:", p_values)
+
self.dataset.group.markers.add_pvalues(p_values)
- self.qtl_results = self.dataset.group.markers.markers
+
+ self.get_lod_score_cutoff()
+
+ return self.dataset.group.markers.markers
- def gen_human_results(self, pheno_vector, tempdata):
+ #def gen_human_results(self, pheno_vector, tempdata):
+ def gen_human_results(self, pheno_vector, key, temp_uuid):
file_base = os.path.join(webqtlConfig.PYLMM_PATH, self.dataset.group.name)
plink_input = input.plink(file_base, type='b')
@@ -105,16 +161,62 @@ class MarkerRegression(object):
kinship_matrix = np.fromfile(open(file_base + '.kin','r'),sep=" ")
kinship_matrix.resize((len(plink_input.indivs),len(plink_input.indivs)))
- p_values, t_stats = lmm.run_human(
- pheno_vector,
- covariate_matrix,
- input_file_name,
- kinship_matrix,
- loading_progress=tempdata
- )
+ print("Before creating params")
+
+ params = dict(pheno_vector = pheno_vector.tolist(),
+ covariate_matrix = covariate_matrix.tolist(),
+ input_file_name = input_file_name,
+ kinship_matrix = kinship_matrix.tolist(),
+ refit = False,
+ temp_uuid = temp_uuid,
+
+ # meta data
+ timestamp = datetime.datetime.now().isoformat(),
+ )
+
+ print("After creating params")
+
+ json_params = json.dumps(params)
+ Redis.set(key, json_params)
+ Redis.expire(key, 60*60)
+
+ print("Before creating the command")
+
+ command = 'python /home/zas1024/gene/wqflask/wqflask/my_pylmm/pyLMM/lmm.py --key {} --species {}'.format(key,
+ "human")
+
+ print("command is:", command)
+
+ os.system(command)
+
+ json_results = Redis.blpop("pylmm:results:" + temp_uuid, 45*60)
+ results = json.loads(json_results[1])
+ t_stats = results['t_stats']
+ p_values = results['p_values']
+
+
+ #p_values, t_stats = lmm.run_human(key)
+
+ #p_values, t_stats = lmm.run_human(
+ # pheno_vector,
+ # covariate_matrix,
+ # input_file_name,
+ # kinship_matrix,
+ # loading_progress=tempdata
+ # )
return p_values, t_stats
+ def get_lod_score_cutoff(self):
+ high_qtl_count = 0
+ for marker in self.dataset.group.markers.markers:
+ if marker['lod_score'] > 2:
+ high_qtl_count += 1
+
+ if high_qtl_count > 10000:
+ return 1
+ else:
+ return 2
def identify_empty_samples(self):
no_val_samples = []
@@ -157,6 +259,11 @@ def create_snp_iterator_file(group):
with gzip.open(snp_file_base, "wb") as fh:
pickle.dump(data, fh, pickle.HIGHEST_PROTOCOL)
+#if __name__ == '__main__':
+# import cPickle as pickle
+# import gzip
+# create_snp_iterator_file("HLC")
+
if __name__ == '__main__':
import cPickle as pickle
import gzip
diff --git a/wqflask/wqflask/my_pylmm/data/genofile_parser.py b/wqflask/wqflask/my_pylmm/data/genofile_parser.py
index 4a647959..4ebadb6e 100644
--- a/wqflask/wqflask/my_pylmm/data/genofile_parser.py
+++ b/wqflask/wqflask/my_pylmm/data/genofile_parser.py
@@ -93,12 +93,12 @@ class ConvertGenoFile(object):
this_marker = Marker()
this_marker.name = row_items[1]
this_marker.chr = row_items[0]
- this_marker.cM = row_items[2]
+ #this_marker.cM = row_items[2]
if self.mb_exists:
- this_marker.Mb = row_items[3]
- genotypes = row_items[4:]
- else:
+ this_marker.Mb = row_items[2]
genotypes = row_items[3:]
+ else:
+ genotypes = row_items[2:]
for item_count, genotype in enumerate(genotypes):
if genotype.upper() in self.configurations:
this_marker.genotypes.append(self.configurations[genotype.upper()])
@@ -106,8 +106,8 @@ class ConvertGenoFile(object):
this_marker.genotypes.append("NA")
#print("this_marker is:", pf(this_marker.__dict__))
-
- self.markers.append(this_marker.__dict__)
+ if this_marker.chr == "14":
+ self.markers.append(this_marker.__dict__)
with open(self.output_file, 'w') as fh:
json.dump(self.markers, fh, indent=" ", sort_keys=True)
@@ -125,8 +125,8 @@ class ConvertGenoFile(object):
def process_rows(self):
for self.latest_row_pos, row in enumerate(self.input_fh):
- if self.input_file.endswith(".geno.gz"):
- print("row: ", row)
+ #if self.input_file.endswith(".geno.gz"):
+ # print("row: ", row)
self.latest_row_value = row
# Take care of headers
if not row.strip():
@@ -186,8 +186,10 @@ if __name__=="__main__":
Old_Geno_Directory = """/home/zas1024/gene/web/genotypes/"""
New_Geno_Directory = """/home/zas1024/gene/web/new_genotypes/"""
#Input_File = """/home/zas1024/gene/web/genotypes/BXD.geno"""
- #Output_File = """/home/zas1024/gene/wqflask/wqflask/pylmm/data/bxd.snps"""
- ConvertGenoFile.process_all(Old_Geno_Directory, New_Geno_Directory)
+ #Output_File = """/home/zas1024/gene/wqflask/wqflask/pylmm/data/bxd.snps"""
+ convertob = ConvertGenoFile("/home/zas1024/gene/web/genotypes/HSNIH.geno.gz", "/home/zas1024/gene/web/new_genotypes/HSNIH.json")
+ convertob.convert()
+ #ConvertGenoFile.process_all(Old_Geno_Directory, New_Geno_Directory)
#ConvertGenoFiles(Geno_Directory)
#process_csv(Input_File, Output_File) \ No newline at end of file
diff --git a/wqflask/wqflask/my_pylmm/pyLMM/lmm.py b/wqflask/wqflask/my_pylmm/pyLMM/lmm.py
index 60d36b8d..a0ff31ef 100644..100755
--- a/wqflask/wqflask/my_pylmm/pyLMM/lmm.py
+++ b/wqflask/wqflask/my_pylmm/pyLMM/lmm.py
@@ -19,6 +19,7 @@ from __future__ import absolute_import, print_function, division
import sys
import time
+import argparse
import uuid
import numpy as np
@@ -27,6 +28,8 @@ from scipy import optimize
from scipy import stats
import pdb
+import simplejson as json
+
import gzip
import zlib
import datetime
@@ -35,22 +38,34 @@ import simplejson as json
from pprint import pformat as pf
+from redis import Redis
+Redis = Redis()
+
+import sys
+sys.path.append("/home/zas1024/gene/wqflask/")
+print("sys.path2:", sys.path)
+
from utility.benchmark import Bench
from utility import temp_data
from wqflask.my_pylmm.pyLMM import chunks
-import redis
-Redis = redis.Redis()
#np.seterr('raise')
+#def run_human(pheno_vector,
+# covariate_matrix,
+# plink_input_file,
+# kinship_matrix,
+# refit=False,
+# loading_progress=None):
+
def run_human(pheno_vector,
covariate_matrix,
plink_input_file,
kinship_matrix,
refit=False,
- loading_progress=None):
+ tempdata=None):
v = np.isnan(pheno_vector)
keep = True - v
@@ -58,17 +73,17 @@ def run_human(pheno_vector,
identifier = str(uuid.uuid4())
- print("pheno_vector: ", pf(pheno_vector))
- print("kinship_matrix: ", pf(kinship_matrix))
- print("kinship_matrix.shape: ", pf(kinship_matrix.shape))
-
- lmm_vars = pickle.dumps(dict(
- pheno_vector = pheno_vector,
- covariate_matrix = covariate_matrix,
- kinship_matrix = kinship_matrix
- ))
- Redis.hset(identifier, "lmm_vars", lmm_vars)
- Redis.expire(identifier, 60*60)
+ #print("pheno_vector: ", pf(pheno_vector))
+ #print("kinship_matrix: ", pf(kinship_matrix))
+ #print("kinship_matrix.shape: ", pf(kinship_matrix.shape))
+
+ #lmm_vars = pickle.dumps(dict(
+ # pheno_vector = pheno_vector,
+ # covariate_matrix = covariate_matrix,
+ # kinship_matrix = kinship_matrix
+ #))
+ #Redis.hset(identifier, "lmm_vars", lmm_vars)
+ #Redis.expire(identifier, 60*60)
if v.sum():
pheno_vector = pheno_vector[keep]
@@ -136,13 +151,13 @@ def run_human(pheno_vector,
#print("***** Added to {} queue *****".format(key))
for snp, this_id in plink_input:
#with Bench("part before association"):
- #if count > 2000:
+ #if count > 1000:
# break
count += 1
percent_complete = (float(count) / total_snps) * 100
#print("percent_complete: ", percent_complete)
- loading_progress.store("percent_complete", percent_complete)
+ tempdata.store("percent_complete", percent_complete)
#with Bench("actual association"):
ps, ts = human_association(snp,
@@ -218,11 +233,17 @@ def human_association(snp,
return ps, ts
-def run(pheno_vector,
+#def run(pheno_vector,
+# genotype_matrix,
+# restricted_max_likelihood=True,
+# refit=False,
+# temp_data=None):
+
+def run_other(pheno_vector,
genotype_matrix,
restricted_max_likelihood=True,
refit=False,
- temp_data=None):
+ tempdata=None):
"""Takes the phenotype vector and genotype matrix and returns a set of p-values and t-statistics
restricted_max_likelihood -- whether to use restricted max likelihood; True or False
@@ -232,8 +253,10 @@ def run(pheno_vector,
"""
+
+ print("In run_other")
with Bench("Calculate Kinship"):
- kinship_matrix = calculate_kinship(genotype_matrix, temp_data)
+ kinship_matrix = calculate_kinship(genotype_matrix, tempdata)
print("kinship_matrix: ", pf(kinship_matrix))
print("kinship_matrix.shape: ", pf(kinship_matrix.shape))
@@ -252,9 +275,9 @@ def run(pheno_vector,
kinship_matrix,
restricted_max_likelihood=True,
refit=False,
- temp_data=temp_data)
+ temp_data=tempdata)
Bench().report()
- return t_stats, p_values
+ return p_values, t_stats
def matrixMult(A,B):
@@ -677,3 +700,48 @@ class LMM:
pl.xlabel("Heritability")
pl.ylabel("Probability of data")
pl.title(title)
+
+def main():
+ parser = argparse.ArgumentParser(description='Run pyLMM')
+ parser.add_argument('-k', '--key')
+ parser.add_argument('-s', '--species')
+
+ opts = parser.parse_args()
+
+ key = opts.key
+ species = opts.species
+
+ json_params = Redis.get(key)
+
+ params = json.loads(json_params)
+ print("params:", params)
+
+ tempdata = temp_data.TempData(params['temp_uuid'])
+ if species == "human" :
+ ps, ts = run_human(pheno_vector = np.array(params['pheno_vector']),
+ covariate_matrix = np.array(params['covariate_matrix']),
+ plink_input_file = params['input_file_name'],
+ kinship_matrix = np.array(params['kinship_matrix']),
+ refit = params['refit'],
+ tempdata = tempdata)
+ else:
+ ps, ts = run_other(pheno_vector = np.array(params['pheno_vector']),
+ genotype_matrix = np.array(params['genotype_matrix']),
+ restricted_max_likelihood = params['restricted_max_likelihood'],
+ refit = params['refit'],
+ tempdata = tempdata)
+
+ results_key = "pylmm:results:" + params['temp_uuid']
+
+ json_results = json.dumps(dict(p_values = ps,
+ t_stats = ts))
+
+ #Pushing json_results into a list where it is the only item because blpop needs a list
+ Redis.rpush(results_key, json_results)
+ Redis.expire(results_key, 60*60)
+
+if __name__ == '__main__':
+ main()
+
+
+
diff --git a/wqflask/wqflask/my_pylmm/run_pylmm.py b/wqflask/wqflask/my_pylmm/run_pylmm.py
new file mode 100644
index 00000000..0c96d986
--- /dev/null
+++ b/wqflask/wqflask/my_pylmm/run_pylmm.py
@@ -0,0 +1,77 @@
+from __future__ import absolute_import, print_function, division
+
+from base import data_set
+from base.species import TheSpecies
+
+ def run(dataset_name, vals, temp_uuid):
+ """Generates p-values for each marker"""
+
+ tempdata = temp_data.TempData(temp_uuid)
+
+ dataset = data_set.create_dataset(dataset_name)
+ species = TheSpecies(dataset=dataset)
+
+ samples = [] # Want only ones with values
+ vals = vals
+
+ for sample in dataset.group.samplelist:
+ samples.append(str(sample))
+
+ gen_data(dataset, vals, tempdata)
+
+
+ def gen_data(dataset, vals)
+ dataset.group.get_markers()
+
+ pheno_vector = np.array([val == "x" and np.nan or float(val) for val in vals])
+
+ if dataset.group.species == "human":
+ p_values, t_stats = gen_human_results(pheno_vector, tempdata)
+ else:
+ genotype_data = [marker['genotypes'] for marker in dataset.group.markers.markers]
+
+ no_val_samples = self.identify_empty_samples()
+ trimmed_genotype_data = self.trim_genotypes(genotype_data, no_val_samples)
+
+ genotype_matrix = np.array(trimmed_genotype_data).T
+
+ #print("pheno_vector: ", pf(pheno_vector))
+ #print("genotype_matrix: ", pf(genotype_matrix))
+ #print("genotype_matrix.shape: ", pf(genotype_matrix.shape))
+
+ t_stats, p_values = lmm.run(
+ pheno_vector,
+ genotype_matrix,
+ restricted_max_likelihood=True,
+ refit=False,
+ temp_data=tempdata
+ )
+ #print("p_values:", p_values)
+
+ self.dataset.group.markers.add_pvalues(p_values)
+ return self.dataset.group.markers.markers
+
+
+ def gen_human_results(self, pheno_vector, tempdata):
+ file_base = os.path.join(webqtlConfig.PYLMM_PATH, self.dataset.group.name)
+
+ plink_input = input.plink(file_base, type='b')
+ input_file_name = os.path.join(webqtlConfig.SNP_PATH, self.dataset.group.name + ".snps.gz")
+
+ pheno_vector = pheno_vector.reshape((len(pheno_vector), 1))
+ covariate_matrix = np.ones((pheno_vector.shape[0],1))
+ kinship_matrix = np.fromfile(open(file_base + '.kin','r'),sep=" ")
+ kinship_matrix.resize((len(plink_input.indivs),len(plink_input.indivs)))
+
+ p_values, t_stats = lmm.run_human(
+ pheno_vector,
+ covariate_matrix,
+ input_file_name,
+ kinship_matrix,
+ loading_progress=tempdata
+ )
+
+ return p_values, t_stats
+
+if __name__ == '__main__':
+ run(dataset_name, vals, temp_uuid) \ No newline at end of file
diff --git a/wqflask/wqflask/static/new/css/bar_chart.css b/wqflask/wqflask/static/new/css/bar_chart.css
index ba14fe4e..c8e081f9 100644
--- a/wqflask/wqflask/static/new/css/bar_chart.css
+++ b/wqflask/wqflask/static/new/css/bar_chart.css
@@ -7,6 +7,7 @@
.bar {
fill: steelblue;
+ shape-rendering: crispEdges;
}
.x.axis path {
diff --git a/wqflask/wqflask/static/new/css/marker_regression.css b/wqflask/wqflask/static/new/css/marker_regression.css
index a737c97e..56980026 100644
--- a/wqflask/wqflask/static/new/css/marker_regression.css
+++ b/wqflask/wqflask/static/new/css/marker_regression.css
@@ -15,10 +15,17 @@
stroke: black;
shape-rendering: crispEdges;
}
+
.manhattan_plot .x_axis text {
text-anchor: end;
font-family: sans-serif;
- font-size: 8px;
+ font-size: 10px;
+}
+
+rect.pane {
+ cursor: move;
+ fill: none;
+ pointer-events: all;
}
/*rect {
diff --git a/wqflask/wqflask/static/new/javascript/bar_chart.coffee b/wqflask/wqflask/static/new/javascript/bar_chart.coffee
index e1bb36e1..3f12d956 100644
--- a/wqflask/wqflask/static/new/javascript/bar_chart.coffee
+++ b/wqflask/wqflask/static/new/javascript/bar_chart.coffee
@@ -129,89 +129,31 @@ class Bar_Chart
#$('.x.axis').remove()
#@add_x_axis(x_scale)
)
-
-
-
- #d3.select(".update_bar_chart").on("click", =>
- # console.log("THIS IS:", $(this))
- # sort_by = $(this).val()
- # console.log("sort_by: ", sort_by)
- # if @attributes.length > 0
- # attribute = $("#color_attribute").val()
- # if sort_by = "value"
- # console.log("sorting by value")
- # sortItems = (a, b) ->
- # return a[1] - b[1]
- #
- # @svg.selectAll(".bar")
- # .data(@sorted_samples())
- # .transition()
- # .duration(1000)
- # .attr("y", (d) =>
- #
- # return @y_scale(d[1])
- # )
- # .attr("height", (d) =>
- # return @plot_height - @y_scale(d[1])
- # )
- # .style("fill", (d) =>
- # if @attributes.length > 0
- # return @attr_color_dict[attribute][d[2][attribute]]
- # else
- # return "steelblue"
- # )
- # .select("title")
- # .text((d) =>
- # return d[1]
- # )
- # sorted_sample_names = (sample[0] for sample in @sorted_samples())
- # x_scale = d3.scale.ordinal()
- # .domain(sorted_sample_names)
- # .rangeBands([0, @plot_width], .1)
- # $('.x.axis').remove()
- # @add_x_axis(x_scale)
- # else
- # console.log("sorting by name")
- # #$("#update_bar_chart").html('Sort By Value')
- # @svg.selectAll(".bar")
- # .data(@samples)
- # .transition()
- # .duration(1000)
- # .attr("y", (d) =>
- # return @y_scale(d[1])
- # )
- # .attr("height", (d) =>
- # return @plot_height - @y_scale(d[1])
- # )
- # .style("fill", (d) =>
- # if @attributes.length > 0
- # return @attr_color_dict[attribute][d[2][attribute]]
- # else
- # return "steelblue"
- # )
- # .select("title")
- # .text((d) =>
- # return d[1]
- # )
- # x_scale = d3.scale.ordinal()
- # .domain(@sample_names)
- # .rangeBands([0, @plot_width], .1)
- # $('.x.axis').remove()
- # @add_x_axis(x_scale)
- #)
-
+
d3.select("#color_by_trait").on("click", =>
@open_trait_selection()
-
)
-
rebuild_bar_graph: (samples) ->
console.log("samples:", samples)
@svg.selectAll(".bar")
.data(samples)
.transition()
.duration(1000)
+ .style("fill", (d) =>
+ if @attributes.length == 0 and @trait_color_dict?
+ console.log("SAMPLE:", d[0])
+ console.log("CHECKING:", @trait_color_dict[d[0]])
+ #return "steelblue"
+ return @trait_color_dict[d[0]]
+ else if @attributes.length > 0 and @attribute != "None"
+ console.log("@attribute:", @attribute)
+ console.log("d[2]", d[2])
+ console.log("the_color:", @attr_color_dict[@attribute][d[2][@attribute]])
+ return @attr_color_dict[@attribute][d[2][@attribute]]
+ else
+ return "steelblue"
+ )
.attr("y", (d) =>
return @y_scale(d[1])
)
@@ -222,15 +164,10 @@ class Bar_Chart
.text((d) =>
return d[1]
)
- .style("fill", (d) =>
- if @attributes.length > 0 and @attribute != "None"
- console.log("@attribute:", @attribute)
- console.log("d[2]", d[2])
- console.log("the_color:", @attr_color_dict[@attribute][d[2][@attribute]])
- return @attr_color_dict[@attribute][d[2][@attribute]]
- else
- return "steelblue"
- )
+ #.style("fill", (d) =>
+ # return @trait_color_dict[d[0]]
+ # #return @attr_color_dict["collection_trait"][trimmed_samples[d[0]]]
+ #)
sample_names = (sample[0] for sample in samples)
console.log("sample_names2:", sample_names)
x_scale = d3.scale.ordinal()
@@ -268,6 +205,35 @@ class Bar_Chart
#this_color_dict[value] = d3.rgb("lightblue").darker(color_range(parseInt(value)))
#this_color_dict[value] = "rgb(0, 0, " + color_range(parseInt(value)) + ")"
@attr_color_dict[key] = this_color_dict
+
+ get_trait_color_dict: (samples, vals) ->
+ @trait_color_dict = {}
+ console.log("vals:", vals)
+ for own key, distinct_vals of vals
+ this_color_dict = {}
+ if distinct_vals.length < 10
+ color = d3.scale.category10()
+ for value, i in distinct_vals
+ this_color_dict[value] = color(i)
+ else
+ console.log("distinct_values:", distinct_vals)
+ #Check whether all values are numbers, and if they are get a corresponding
+ #color gradient
+ if _.every(distinct_vals, (d) =>
+ if isNaN(d)
+ return false
+ else
+ return true
+ )
+ color_range = d3.scale.linear()
+ .domain([d3.min(distinct_vals),
+ d3.max(distinct_vals)])
+ .range([0,255])
+ for value, i in distinct_vals
+ console.log("color_range(value):", parseInt(color_range(value)))
+ this_color_dict[value] = d3.rgb(parseInt(color_range(value)),0, 0)
+ for own sample, value of samples
+ @trait_color_dict[sample] = this_color_dict[value]
convert_into_colors: (values) ->
color_range = d3.scale.linear()
@@ -450,29 +416,38 @@ class Bar_Chart
trimmed_samples = @trim_values(trait_sample_data)
distinct_values = {}
distinct_values["collection_trait"] = @get_distinct_values(trimmed_samples)
- @get_attr_color_dict(distinct_values)
- if $("#update_bar_chart").html() == 'Sort By Name'
+ #@get_attr_color_dict(distinct_values)
+ @get_trait_color_dict(trimmed_samples, distinct_values)
+ console.log("TRAIT_COLOR_DICT:", @trait_color_dict)
+ console.log("SAMPLES:", @samples)
+ if @sort_by = "value"
@svg.selectAll(".bar")
- .data(@sorted_samples())
+ .data(@samples)
.transition()
.duration(1000)
.style("fill", (d) =>
- return @attr_color_dict["collection_trait"][trimmed_samples[d[0]]]
+ console.log("this color:", @trait_color_dict[d[0]])
+ return @trait_color_dict[d[0]]
)
.select("title")
.text((d) =>
return d[1]
- )
+ )
+
else
@svg.selectAll(".bar")
- .data(@samples)
+ .data(@sorted_samples())
.transition()
.duration(1000)
.style("fill", (d) =>
- return @attr_color_dict["collection_trait"][trimmed_samples[d[0]]]
+ console.log("this color:", @trait_color_dict[d[0]])
+ return @trait_color_dict[d[0]]
)
-
-
+ .select("title")
+ .text((d) =>
+ return d[1]
+ )
+
trim_values: (trait_sample_data) ->
trimmed_samples = {}
for sample in @sample_names
diff --git a/wqflask/wqflask/static/new/javascript/bar_chart.js b/wqflask/wqflask/static/new/javascript/bar_chart.js
index b02ee1da..c0b056f8 100644
--- a/wqflask/wqflask/static/new/javascript/bar_chart.js
+++ b/wqflask/wqflask/static/new/javascript/bar_chart.js
@@ -95,14 +95,12 @@
var sample, sample_names, x_scale,
_this = this;
console.log("samples:", samples);
- this.svg.selectAll(".bar").data(samples).transition().duration(1000).attr("y", function(d) {
- return _this.y_scale(d[1]);
- }).attr("height", function(d) {
- return _this.plot_height - _this.y_scale(d[1]);
- }).select("title").text(function(d) {
- return d[1];
- }).style("fill", function(d) {
- if (_this.attributes.length > 0 && _this.attribute !== "None") {
+ this.svg.selectAll(".bar").data(samples).transition().duration(1000).style("fill", function(d) {
+ if (_this.attributes.length === 0 && (_this.trait_color_dict != null)) {
+ console.log("SAMPLE:", d[0]);
+ console.log("CHECKING:", _this.trait_color_dict[d[0]]);
+ return _this.trait_color_dict[d[0]];
+ } else if (_this.attributes.length > 0 && _this.attribute !== "None") {
console.log("@attribute:", _this.attribute);
console.log("d[2]", d[2]);
console.log("the_color:", _this.attr_color_dict[_this.attribute][d[2][_this.attribute]]);
@@ -110,6 +108,12 @@
} else {
return "steelblue";
}
+ }).attr("y", function(d) {
+ return _this.y_scale(d[1]);
+ }).attr("height", function(d) {
+ return _this.plot_height - _this.y_scale(d[1]);
+ }).select("title").text(function(d) {
+ return d[1];
});
sample_names = (function() {
var _i, _len, _results;
@@ -164,6 +168,48 @@
return _results;
};
+ Bar_Chart.prototype.get_trait_color_dict = function(samples, vals) {
+ var color, color_range, distinct_vals, i, key, sample, this_color_dict, value, _i, _j, _len, _len1, _results,
+ _this = this;
+ this.trait_color_dict = {};
+ console.log("vals:", vals);
+ for (key in vals) {
+ if (!__hasProp.call(vals, key)) continue;
+ distinct_vals = vals[key];
+ this_color_dict = {};
+ if (distinct_vals.length < 10) {
+ color = d3.scale.category10();
+ for (i = _i = 0, _len = distinct_vals.length; _i < _len; i = ++_i) {
+ value = distinct_vals[i];
+ this_color_dict[value] = color(i);
+ }
+ } else {
+ console.log("distinct_values:", distinct_vals);
+ if (_.every(distinct_vals, function(d) {
+ if (isNaN(d)) {
+ return false;
+ } else {
+ return true;
+ }
+ })) {
+ color_range = d3.scale.linear().domain([d3.min(distinct_vals), d3.max(distinct_vals)]).range([0, 255]);
+ for (i = _j = 0, _len1 = distinct_vals.length; _j < _len1; i = ++_j) {
+ value = distinct_vals[i];
+ console.log("color_range(value):", parseInt(color_range(value)));
+ this_color_dict[value] = d3.rgb(parseInt(color_range(value)), 0, 0);
+ }
+ }
+ }
+ }
+ _results = [];
+ for (sample in samples) {
+ if (!__hasProp.call(samples, sample)) continue;
+ value = samples[sample];
+ _results.push(this.trait_color_dict[sample] = this_color_dict[value]);
+ }
+ return _results;
+ };
+
Bar_Chart.prototype.convert_into_colors = function(values) {
var color_range, i, value, _i, _len, _results;
color_range = d3.scale.linear().domain([d3.min(values), d3.max(values)]).range([0, 255]);
@@ -346,16 +392,22 @@
trimmed_samples = this.trim_values(trait_sample_data);
distinct_values = {};
distinct_values["collection_trait"] = this.get_distinct_values(trimmed_samples);
- this.get_attr_color_dict(distinct_values);
- if ($("#update_bar_chart").html() === 'Sort By Name') {
- return this.svg.selectAll(".bar").data(this.sorted_samples()).transition().duration(1000).style("fill", function(d) {
- return _this.attr_color_dict["collection_trait"][trimmed_samples[d[0]]];
+ this.get_trait_color_dict(trimmed_samples, distinct_values);
+ console.log("TRAIT_COLOR_DICT:", this.trait_color_dict);
+ console.log("SAMPLES:", this.samples);
+ if (this.sort_by = "value") {
+ return this.svg.selectAll(".bar").data(this.samples).transition().duration(1000).style("fill", function(d) {
+ console.log("this color:", _this.trait_color_dict[d[0]]);
+ return _this.trait_color_dict[d[0]];
}).select("title").text(function(d) {
return d[1];
});
} else {
- return this.svg.selectAll(".bar").data(this.samples).transition().duration(1000).style("fill", function(d) {
- return _this.attr_color_dict["collection_trait"][trimmed_samples[d[0]]];
+ return this.svg.selectAll(".bar").data(this.sorted_samples()).transition().duration(1000).style("fill", function(d) {
+ console.log("this color:", _this.trait_color_dict[d[0]]);
+ return _this.trait_color_dict[d[0]];
+ }).select("title").text(function(d) {
+ return d[1];
});
}
};
diff --git a/wqflask/wqflask/static/new/javascript/chr_manhattan_plot.coffee b/wqflask/wqflask/static/new/javascript/chr_manhattan_plot.coffee
new file mode 100644
index 00000000..30e6ea5e
--- /dev/null
+++ b/wqflask/wqflask/static/new/javascript/chr_manhattan_plot.coffee
@@ -0,0 +1,211 @@
+root = exports ? this
+
+class Chr_Manhattan_Plot
+ constructor: (@plot_height, @plot_width, @chr) ->
+ @qtl_results = js_data.qtl_results
+ console.log("qtl_results are:", @qtl_results)
+ console.log("chr is:", @chr)
+
+ @get_max_chr()
+
+ @filter_qtl_results()
+ console.log("filtered results:", @these_results)
+ @get_qtl_count()
+
+ @x_coords = []
+ @y_coords = []
+ @marker_names = []
+
+ console.time('Create coordinates')
+ @create_coordinates()
+ console.log("@x_coords: ", @x_coords)
+ console.log("@y_coords: ", @y_coords)
+ console.timeEnd('Create coordinates')
+
+ # Buffer to allow for the ticks/labels to be drawn
+ @x_buffer = @plot_width/30
+ @y_buffer = @plot_height/20
+
+ @x_max = d3.max(@x_coords)
+ @y_max = d3.max(@y_coords) * 1.2
+
+ @svg = @create_svg()
+
+ @plot_coordinates = _.zip(@x_coords, @y_coords, @marker_names)
+ console.log("coordinates:", @plot_coordinates)
+
+ @plot_height -= @y_buffer
+
+ @create_scales()
+
+ console.time('Create graph')
+ @create_graph()
+ console.timeEnd('Create graph')
+
+ get_max_chr: () ->
+ @max_chr = 0
+ for key of js_data.chromosomes
+ console.log("key is:", key)
+ if parseInt(key) > @max_chr
+ @max_chr = parseInt(key)
+
+ filter_qtl_results: () ->
+ @these_results = []
+ this_chr = 100
+ for result in @qtl_results
+ if result.chr == "X"
+ this_chr = @max_chr
+ else
+ this_chr = result.chr
+ console.log("this_chr is:", this_chr)
+ console.log("@chr[0] is:", parseInt(@chr[0]))
+ if this_chr > parseInt(@chr[0])
+ break
+ if parseInt(this_chr) == parseInt(@chr[0])
+ @these_results.push(result)
+
+ get_qtl_count: () ->
+ high_qtl_count = 0
+ for result in @these_results
+ if result.lod_score > 1
+ high_qtl_count += 1
+ console.log("high_qtl_count:", high_qtl_count)
+
+ if high_qtl_count > 10000
+ @y_axis_filter = 2
+ else if high_qtl_count > 1000
+ @y_axis_filter = 1
+ else
+ @y_axis_filter = 0
+
+ create_coordinates: () ->
+ for result in @these_results
+ @x_coords.push(parseFloat(result.Mb))
+ @y_coords.push(result.lod_score)
+ @marker_names.push(result.name)
+
+ create_svg: () ->
+ svg = d3.select("#manhattan_plot")
+ .append("svg")
+ .attr("class", "manhattan_plot")
+ .attr("width", @plot_width+@x_buffer)
+ .attr("height", @plot_height+@y_buffer)
+ .append("g")
+ return svg
+
+ create_scales: () ->
+ @x_scale = d3.scale.linear()
+ .domain([0, @chr[1]])
+ .range([@x_buffer, @plot_width])
+ @y_scale = d3.scale.linear()
+ .domain([@y_axis_filter, @y_max])
+ .range([@plot_height, @y_buffer])
+
+ create_graph: () ->
+ @add_border()
+ @add_x_axis()
+ @add_y_axis()
+ @add_plot_points()
+
+ add_border: () ->
+ border_coords = [[@y_buffer, @plot_height, @x_buffer, @x_buffer],
+ [@y_buffer, @plot_height, @plot_width, @plot_width],
+ [@y_buffer, @y_buffer, @x_buffer, @plot_width],
+ [@plot_height, @plot_height, @x_buffer, @plot_width]]
+
+ @svg.selectAll("line")
+ .data(border_coords)
+ .enter()
+ .append("line")
+ .attr("y1", (d) =>
+ return d[0]
+ )
+ .attr("y2", (d) =>
+ return d[1]
+ )
+ .attr("x1", (d) =>
+ return d[2]
+ )
+ .attr("x2", (d) =>
+ return d[3]
+ )
+ .style("stroke", "#000")
+
+ add_x_axis: () ->
+ @xAxis = d3.svg.axis()
+ .scale(@x_scale)
+ .orient("bottom")
+ .ticks(20)
+
+ @xAxis.tickFormat((d) =>
+ d3.format("d") #format as integer
+ return (d)
+ )
+
+ @svg.append("g")
+ .attr("class", "x_axis")
+ .attr("transform", "translate(0," + @plot_height + ")")
+ .call(@xAxis)
+ .selectAll("text")
+ .attr("text-anchor", "right")
+ .attr("font-size", "12px")
+ .attr("dx", "-1.6em")
+ .attr("transform", (d) =>
+ return "translate(-12,0) rotate(-90)"
+ )
+
+ add_y_axis: () ->
+ @yAxis = d3.svg.axis()
+ .scale(@y_scale)
+ .orient("left")
+ .ticks(5)
+
+ @svg.append("g")
+ .attr("class", "y_axis")
+ .attr("transform", "translate(" + @x_buffer + ",0)")
+ .call(@yAxis)
+
+ add_plot_points: () ->
+ @plot_point = @svg.selectAll("circle")
+ .data(@plot_coordinates)
+ .enter()
+ .append("circle")
+ .attr("cx", (d) =>
+ return @x_scale(d[0])
+ )
+ .attr("cy", (d) =>
+ return @y_scale(d[1])
+ )
+ .attr("r", 2)
+ .attr("id", (d) =>
+ return "point_" + String(d[2])
+ )
+ .classed("circle", true)
+ .on("mouseover", (d) =>
+ console.log("d3.event is:", d3.event)
+ console.log("d is:", d)
+ this_id = "point_" + String(d[2])
+ d3.select("#" + this_id).classed("d3_highlight", true)
+ .attr("r", 5)
+ .attr("fill", "yellow")
+ .call(@show_marker_in_table(d))
+ )
+ .on("mouseout", (d) =>
+ this_id = "point_" + String(d[2])
+ d3.select("#" + this_id).classed("d3_highlight", false)
+ .attr("r", 2)
+ .attr("fill", "black")
+ #.call(@show_marker_in_table())
+ )
+
+ show_marker_in_table: (marker_info) ->
+ console.log("in show_marker_in_table")
+ ### Searches for the select marker in the results table below ###
+ if marker_info
+ marker_name = marker_info[2]
+ $("#qtl_results_filter").find("input:first").val(marker_name).change()
+ #else
+ # marker_name = ""
+ #$("#qtl_results_filter").find("input:first").val(marker_name).change()
+
+root.Chr_Manhattan_Plot = Chr_Manhattan_Plot \ No newline at end of file
diff --git a/wqflask/wqflask/static/new/javascript/chr_manhattan_plot.js b/wqflask/wqflask/static/new/javascript/chr_manhattan_plot.js
new file mode 100644
index 00000000..2cbab00c
--- /dev/null
+++ b/wqflask/wqflask/static/new/javascript/chr_manhattan_plot.js
@@ -0,0 +1,206 @@
+// Generated by CoffeeScript 1.6.1
+(function() {
+ var Chr_Manhattan_Plot, root;
+
+ root = typeof exports !== "undefined" && exports !== null ? exports : this;
+
+ Chr_Manhattan_Plot = (function() {
+
+ function Chr_Manhattan_Plot(plot_height, plot_width, chr) {
+ this.plot_height = plot_height;
+ this.plot_width = plot_width;
+ this.chr = chr;
+ this.qtl_results = js_data.qtl_results;
+ console.log("qtl_results are:", this.qtl_results);
+ console.log("chr is:", this.chr);
+ this.get_max_chr();
+ this.filter_qtl_results();
+ console.log("filtered results:", this.these_results);
+ this.get_qtl_count();
+ this.x_coords = [];
+ this.y_coords = [];
+ this.marker_names = [];
+ console.time('Create coordinates');
+ this.create_coordinates();
+ console.log("@x_coords: ", this.x_coords);
+ console.log("@y_coords: ", this.y_coords);
+ console.timeEnd('Create coordinates');
+ this.x_buffer = this.plot_width / 30;
+ this.y_buffer = this.plot_height / 20;
+ this.x_max = d3.max(this.x_coords);
+ this.y_max = d3.max(this.y_coords) * 1.2;
+ this.svg = this.create_svg();
+ this.plot_coordinates = _.zip(this.x_coords, this.y_coords, this.marker_names);
+ console.log("coordinates:", this.plot_coordinates);
+ this.plot_height -= this.y_buffer;
+ this.create_scales();
+ console.time('Create graph');
+ this.create_graph();
+ console.timeEnd('Create graph');
+ }
+
+ Chr_Manhattan_Plot.prototype.get_max_chr = function() {
+ var key, _results;
+ this.max_chr = 0;
+ _results = [];
+ for (key in js_data.chromosomes) {
+ console.log("key is:", key);
+ if (parseInt(key) > this.max_chr) {
+ _results.push(this.max_chr = parseInt(key));
+ } else {
+ _results.push(void 0);
+ }
+ }
+ return _results;
+ };
+
+ Chr_Manhattan_Plot.prototype.filter_qtl_results = function() {
+ var result, this_chr, _i, _len, _ref, _results;
+ this.these_results = [];
+ this_chr = 100;
+ _ref = this.qtl_results;
+ _results = [];
+ for (_i = 0, _len = _ref.length; _i < _len; _i++) {
+ result = _ref[_i];
+ if (result.chr === "X") {
+ this_chr = this.max_chr;
+ } else {
+ this_chr = result.chr;
+ }
+ console.log("this_chr is:", this_chr);
+ console.log("@chr[0] is:", parseInt(this.chr[0]));
+ if (this_chr > parseInt(this.chr[0])) {
+ break;
+ }
+ if (parseInt(this_chr) === parseInt(this.chr[0])) {
+ _results.push(this.these_results.push(result));
+ } else {
+ _results.push(void 0);
+ }
+ }
+ return _results;
+ };
+
+ Chr_Manhattan_Plot.prototype.get_qtl_count = function() {
+ var high_qtl_count, result, _i, _len, _ref;
+ high_qtl_count = 0;
+ _ref = this.these_results;
+ for (_i = 0, _len = _ref.length; _i < _len; _i++) {
+ result = _ref[_i];
+ if (result.lod_score > 1) {
+ high_qtl_count += 1;
+ }
+ }
+ console.log("high_qtl_count:", high_qtl_count);
+ if (high_qtl_count > 10000) {
+ return this.y_axis_filter = 2;
+ } else if (high_qtl_count > 1000) {
+ return this.y_axis_filter = 1;
+ } else {
+ return this.y_axis_filter = 0;
+ }
+ };
+
+ Chr_Manhattan_Plot.prototype.create_coordinates = function() {
+ var result, _i, _len, _ref, _results;
+ _ref = this.these_results;
+ _results = [];
+ for (_i = 0, _len = _ref.length; _i < _len; _i++) {
+ result = _ref[_i];
+ this.x_coords.push(parseFloat(result.Mb));
+ this.y_coords.push(result.lod_score);
+ _results.push(this.marker_names.push(result.name));
+ }
+ return _results;
+ };
+
+ Chr_Manhattan_Plot.prototype.create_svg = function() {
+ var svg;
+ svg = d3.select("#manhattan_plot").append("svg").attr("class", "manhattan_plot").attr("width", this.plot_width + this.x_buffer).attr("height", this.plot_height + this.y_buffer).append("g");
+ return svg;
+ };
+
+ Chr_Manhattan_Plot.prototype.create_scales = function() {
+ this.x_scale = d3.scale.linear().domain([0, this.chr[1]]).range([this.x_buffer, this.plot_width]);
+ return this.y_scale = d3.scale.linear().domain([this.y_axis_filter, this.y_max]).range([this.plot_height, this.y_buffer]);
+ };
+
+ Chr_Manhattan_Plot.prototype.create_graph = function() {
+ this.add_border();
+ this.add_x_axis();
+ this.add_y_axis();
+ return this.add_plot_points();
+ };
+
+ Chr_Manhattan_Plot.prototype.add_border = function() {
+ var border_coords,
+ _this = this;
+ border_coords = [[this.y_buffer, this.plot_height, this.x_buffer, this.x_buffer], [this.y_buffer, this.plot_height, this.plot_width, this.plot_width], [this.y_buffer, this.y_buffer, this.x_buffer, this.plot_width], [this.plot_height, this.plot_height, this.x_buffer, this.plot_width]];
+ return this.svg.selectAll("line").data(border_coords).enter().append("line").attr("y1", function(d) {
+ return d[0];
+ }).attr("y2", function(d) {
+ return d[1];
+ }).attr("x1", function(d) {
+ return d[2];
+ }).attr("x2", function(d) {
+ return d[3];
+ }).style("stroke", "#000");
+ };
+
+ Chr_Manhattan_Plot.prototype.add_x_axis = function() {
+ var _this = this;
+ this.xAxis = d3.svg.axis().scale(this.x_scale).orient("bottom").ticks(20);
+ this.xAxis.tickFormat(function(d) {
+ d3.format("d");
+ return d;
+ });
+ return this.svg.append("g").attr("class", "x_axis").attr("transform", "translate(0," + this.plot_height + ")").call(this.xAxis).selectAll("text").attr("text-anchor", "right").attr("font-size", "12px").attr("dx", "-1.6em").attr("transform", function(d) {
+ return "translate(-12,0) rotate(-90)";
+ });
+ };
+
+ Chr_Manhattan_Plot.prototype.add_y_axis = function() {
+ this.yAxis = d3.svg.axis().scale(this.y_scale).orient("left").ticks(5);
+ return this.svg.append("g").attr("class", "y_axis").attr("transform", "translate(" + this.x_buffer + ",0)").call(this.yAxis);
+ };
+
+ Chr_Manhattan_Plot.prototype.add_plot_points = function() {
+ var _this = this;
+ return this.plot_point = this.svg.selectAll("circle").data(this.plot_coordinates).enter().append("circle").attr("cx", function(d) {
+ return _this.x_scale(d[0]);
+ }).attr("cy", function(d) {
+ return _this.y_scale(d[1]);
+ }).attr("r", 2).attr("id", function(d) {
+ return "point_" + String(d[2]);
+ }).classed("circle", true).on("mouseover", function(d) {
+ var this_id;
+ console.log("d3.event is:", d3.event);
+ console.log("d is:", d);
+ this_id = "point_" + String(d[2]);
+ return d3.select("#" + this_id).classed("d3_highlight", true).attr("r", 5).attr("fill", "yellow").call(_this.show_marker_in_table(d));
+ }).on("mouseout", function(d) {
+ var this_id;
+ this_id = "point_" + String(d[2]);
+ return d3.select("#" + this_id).classed("d3_highlight", false).attr("r", 2).attr("fill", "black");
+ });
+ };
+
+ Chr_Manhattan_Plot.prototype.show_marker_in_table = function(marker_info) {
+ var marker_name;
+ console.log("in show_marker_in_table");
+ /* Searches for the select marker in the results table below
+ */
+
+ if (marker_info) {
+ marker_name = marker_info[2];
+ return $("#qtl_results_filter").find("input:first").val(marker_name).change();
+ }
+ };
+
+ return Chr_Manhattan_Plot;
+
+ })();
+
+ root.Chr_Manhattan_Plot = Chr_Manhattan_Plot;
+
+}).call(this);
diff --git a/wqflask/wqflask/static/new/javascript/histogram.coffee b/wqflask/wqflask/static/new/javascript/histogram.coffee
new file mode 100644
index 00000000..97b833fd
--- /dev/null
+++ b/wqflask/wqflask/static/new/javascript/histogram.coffee
@@ -0,0 +1,106 @@
+root = exports ? this
+
+class Histogram
+ constructor: (@sample_list, @sample_group) ->
+ @sort_by = "name"
+ @format_count = d3.format(",.0f") #a formatter for counts
+ @get_sample_vals()
+
+ @margin = {top: 10, right: 30, bottom: 30, left: 30}
+ @plot_width = 960 - @margin.left - @margin.right
+ @plot_height = 500 - @margin.top - @margin.bottom
+
+ @x_buffer = @plot_width/20
+ @y_buffer = @plot_height/20
+
+ @y_min = d3.min(@sample_vals)
+ @y_max = d3.max(@sample_vals) * 1.1
+
+ @plot_height -= @y_buffer
+ @create_x_scale()
+ @get_histogram_data()
+ @create_y_scale()
+
+ @svg = @create_svg()
+
+ @create_graph()
+
+ get_sample_vals: () ->
+ @sample_vals = (sample.value for sample in @sample_list when sample.value != null)
+
+ create_svg: () ->
+ svg = d3.select("#histogram")
+ .append("svg")
+ .attr("class", "bar_chart")
+ .attr("width", @plot_width + @margin.left + @margin.right)
+ .attr("height", @plot_height + @margin.top + @margin.bottom)
+ .append("g")
+ .attr("transform", "translate(" + @margin.left + "," + @margin.top + ")")
+
+ return svg
+
+ create_x_scale: () ->
+ console.log("min/max:", d3.min(@sample_vals) + "," + d3.max(@sample_vals))
+ @x_scale = d3.scale.linear()
+ .domain([d3.min(@sample_vals), d3.max(@sample_vals)])
+ .range([0, @plot_width])
+
+ get_histogram_data: () ->
+ console.log("sample_vals:", @sample_vals)
+ @histogram_data = d3.layout.histogram()
+ .bins(@x_scale.ticks(20))(@sample_vals)
+ console.log("histogram_data:", @histogram_data[0])
+
+ create_y_scale: () ->
+ @y_scale = d3.scale.linear()
+ .domain([0, d3.max(@histogram_data, (d) => return d.y )])
+ .range([@plot_height, 0])
+
+ create_graph: () ->
+ @add_x_axis()
+ @add_bars()
+
+ add_x_axis: () ->
+ x_axis = d3.svg.axis()
+ .scale(@x_scale)
+ .orient("bottom");
+
+ @svg.append("g")
+ .attr("class", "x axis")
+ .attr("transform", "translate(0," + @plot_height + ")")
+ .call(x_axis)
+
+ add_y_axis: () ->
+ y_axis = d3.svg.axis()
+ .scale(@y_scale)
+ .orient("left")
+ .ticks(5)
+
+ add_bars: () ->
+ console.log("bar_width:", @x_scale(@histogram_data[0].dx))
+ bar = @svg.selectAll(".bar")
+ .data(@histogram_data)
+ .enter().append("g")
+ .attr("class", "bar")
+ .attr("transform", (d) =>
+ return "translate(" + @x_scale(d.x) + "," + @y_scale(d.y) + ")")
+
+ bar.append("rect")
+ .attr("x", 1)
+ .attr("width", (@x_scale(@histogram_data[1].x) - @x_scale(@histogram_data[0].x)) - 1)
+ .attr("height", (d) =>
+ return @plot_height - @y_scale(d.y)
+ )
+ bar.append("text")
+ .attr("dy", ".75em")
+ .attr("y", 6)
+ .attr("x", (@x_scale(@histogram_data[1].x) - @x_scale(@histogram_data[0].x))/2)
+ .attr("text-anchor", "middle")
+ .style("fill", "#fff")
+ .text((d) =>
+ bar_height = @plot_height - @y_scale(d.y)
+ if bar_height > 20
+ return @format_count(d.y)
+ )
+
+root.Histogram = Histogram \ No newline at end of file
diff --git a/wqflask/wqflask/static/new/javascript/histogram.js b/wqflask/wqflask/static/new/javascript/histogram.js
new file mode 100644
index 00000000..eb00ca73
--- /dev/null
+++ b/wqflask/wqflask/static/new/javascript/histogram.js
@@ -0,0 +1,118 @@
+// Generated by CoffeeScript 1.6.1
+(function() {
+ var Histogram, root;
+
+ root = typeof exports !== "undefined" && exports !== null ? exports : this;
+
+ Histogram = (function() {
+
+ function Histogram(sample_list, sample_group) {
+ this.sample_list = sample_list;
+ this.sample_group = sample_group;
+ this.sort_by = "name";
+ this.format_count = d3.format(",.0f");
+ this.get_sample_vals();
+ this.margin = {
+ top: 10,
+ right: 30,
+ bottom: 30,
+ left: 30
+ };
+ this.plot_width = 960 - this.margin.left - this.margin.right;
+ this.plot_height = 500 - this.margin.top - this.margin.bottom;
+ this.x_buffer = this.plot_width / 20;
+ this.y_buffer = this.plot_height / 20;
+ this.y_min = d3.min(this.sample_vals);
+ this.y_max = d3.max(this.sample_vals) * 1.1;
+ this.plot_height -= this.y_buffer;
+ this.create_x_scale();
+ this.get_histogram_data();
+ this.create_y_scale();
+ this.svg = this.create_svg();
+ this.create_graph();
+ }
+
+ Histogram.prototype.get_sample_vals = function() {
+ var sample;
+ return this.sample_vals = (function() {
+ var _i, _len, _ref, _results;
+ _ref = this.sample_list;
+ _results = [];
+ for (_i = 0, _len = _ref.length; _i < _len; _i++) {
+ sample = _ref[_i];
+ if (sample.value !== null) {
+ _results.push(sample.value);
+ }
+ }
+ return _results;
+ }).call(this);
+ };
+
+ Histogram.prototype.create_svg = function() {
+ var svg;
+ svg = d3.select("#histogram").append("svg").attr("class", "bar_chart").attr("width", this.plot_width + this.margin.left + this.margin.right).attr("height", this.plot_height + this.margin.top + this.margin.bottom).append("g").attr("transform", "translate(" + this.margin.left + "," + this.margin.top + ")");
+ return svg;
+ };
+
+ Histogram.prototype.create_x_scale = function() {
+ console.log("min/max:", d3.min(this.sample_vals) + "," + d3.max(this.sample_vals));
+ return this.x_scale = d3.scale.linear().domain([d3.min(this.sample_vals), d3.max(this.sample_vals)]).range([0, this.plot_width]);
+ };
+
+ Histogram.prototype.get_histogram_data = function() {
+ console.log("sample_vals:", this.sample_vals);
+ this.histogram_data = d3.layout.histogram().bins(this.x_scale.ticks(20))(this.sample_vals);
+ return console.log("histogram_data:", this.histogram_data[0]);
+ };
+
+ Histogram.prototype.create_y_scale = function() {
+ var _this = this;
+ return this.y_scale = d3.scale.linear().domain([
+ 0, d3.max(this.histogram_data, function(d) {
+ return d.y;
+ })
+ ]).range([this.plot_height, 0]);
+ };
+
+ Histogram.prototype.create_graph = function() {
+ this.add_x_axis();
+ return this.add_bars();
+ };
+
+ Histogram.prototype.add_x_axis = function() {
+ var x_axis;
+ x_axis = d3.svg.axis().scale(this.x_scale).orient("bottom");
+ return this.svg.append("g").attr("class", "x axis").attr("transform", "translate(0," + this.plot_height + ")").call(x_axis);
+ };
+
+ Histogram.prototype.add_y_axis = function() {
+ var y_axis;
+ return y_axis = d3.svg.axis().scale(this.y_scale).orient("left").ticks(5);
+ };
+
+ Histogram.prototype.add_bars = function() {
+ var bar,
+ _this = this;
+ console.log("bar_width:", this.x_scale(this.histogram_data[0].dx));
+ bar = this.svg.selectAll(".bar").data(this.histogram_data).enter().append("g").attr("class", "bar").attr("transform", function(d) {
+ return "translate(" + _this.x_scale(d.x) + "," + _this.y_scale(d.y) + ")";
+ });
+ bar.append("rect").attr("x", 1).attr("width", (this.x_scale(this.histogram_data[1].x) - this.x_scale(this.histogram_data[0].x)) - 1).attr("height", function(d) {
+ return _this.plot_height - _this.y_scale(d.y);
+ });
+ return bar.append("text").attr("dy", ".75em").attr("y", 6).attr("x", (this.x_scale(this.histogram_data[1].x) - this.x_scale(this.histogram_data[0].x)) / 2).attr("text-anchor", "middle").style("fill", "#fff").text(function(d) {
+ var bar_height;
+ bar_height = _this.plot_height - _this.y_scale(d.y);
+ if (bar_height > 20) {
+ return _this.format_count(d.y);
+ }
+ });
+ };
+
+ return Histogram;
+
+ })();
+
+ root.Histogram = Histogram;
+
+}).call(this);
diff --git a/wqflask/wqflask/static/new/javascript/marker_regression.coffee b/wqflask/wqflask/static/new/javascript/marker_regression.coffee
index f5f13c27..3f8fbe0d 100644
--- a/wqflask/wqflask/static/new/javascript/marker_regression.coffee
+++ b/wqflask/wqflask/static/new/javascript/marker_regression.coffee
@@ -1,311 +1,443 @@
-$ ->
- class Manhattan_Plot
- constructor: (@plot_height, @plot_width) ->
- @qtl_results = js_data.qtl_results
- console.log("qtl_results are:", @qtl_results)
- @chromosomes = js_data.chromosomes
+root = exports ? this
- @total_length = 0
+class Manhattan_Plot
+ constructor: (@plot_height, @plot_width) ->
+ @qtl_results = js_data.qtl_results
+ console.log("qtl_results are:", @qtl_results)
+ @chromosomes = js_data.chromosomes
- @max_chr = @get_max_chr()
+ @total_length = 0
- @x_coords = []
- @y_coords = []
- @marker_names = []
- console.time('Create coordinates')
- @create_coordinates()
- console.log("@x_coords: ", @x_coords)
- console.log("@y_coords: ", @y_coords)
- console.timeEnd('Create coordinates')
- [@chr_lengths, @cumulative_chr_lengths] = @get_chr_lengths()
+ @max_chr = @get_max_chr()
- # Buffer to allow for the ticks/labels to be drawn
- @x_buffer = @plot_width/30
- @y_buffer = @plot_height/20
-
- #@x_max = d3.max(@x_coords)
- @x_max = @total_length
- console.log("@x_max: ", @x_max)
- console.log("@x_buffer: ", @x_buffer)
- @y_max = d3.max(@y_coords) * 1.2
+ @x_coords = []
+ @y_coords = []
+ @marker_names = []
+ console.time('Create coordinates')
+ @get_qtl_count()
+ @create_coordinates()
+ console.log("@x_coords: ", @x_coords)
+ console.log("@y_coords: ", @y_coords)
+ console.timeEnd('Create coordinates')
+ [@chr_lengths, @cumulative_chr_lengths] = @get_chr_lengths()
- @svg = @create_svg()
- @plot_coordinates = _.zip(@x_coords, @y_coords, @marker_names)
-
- @plot_height -= @y_buffer
- @create_scales()
- console.time('Create graph')
- @create_graph()
- console.timeEnd('Create graph')
+ # Buffer to allow for the ticks/labels to be drawn
+ @x_buffer = @plot_width/30
+ @y_buffer = @plot_height/20
+
+ #@x_max = d3.max(@x_coords)
+ @x_max = @total_length
+ console.log("@x_max: ", @x_max)
+ console.log("@x_buffer: ", @x_buffer)
+ @y_max = d3.max(@y_coords) * 1.2
- get_max_chr: () ->
- max_chr = 0
- for result in @qtl_results
- chr = parseInt(result.chr)
- if not _.isNaN(chr)
- if chr > max_chr
- max_chr = chr
- return max_chr
+ @svg = @create_svg()
+ console.log("svg created")
- get_chr_lengths: () ->
- ###
- #Gets a list of both individual and cumulative (the position of one on the graph
- #is its own length plus the lengths of all preceding chromosomes) lengths in order
- #to draw the vertical lines separating chromosomes and the chromosome labels
- #
- ###
-
- console.log("@chromosomes: ", @chromosomes)
-
- cumulative_chr_lengths = []
- chr_lengths = []
- total_length = 0
- for key of @chromosomes
- this_length = @chromosomes[key]
- chr_lengths.push(this_length)
- cumulative_chr_lengths.push(total_length + this_length)
- total_length += this_length
+ @plot_coordinates = _.zip(@x_coords, @y_coords, @marker_names)
+ console.log("coordinates:", @plot_coordinates)
+
+ @plot_height -= @y_buffer
- console.log("chr_lengths: ", chr_lengths)
+ @create_scales()
- return [chr_lengths, cumulative_chr_lengths]
+ console.time('Create graph')
+ @create_graph()
+ console.timeEnd('Create graph')
- create_coordinates: () ->
- chr_lengths = []
- chr_seen = []
- for result in js_data.qtl_results
- if result.chr == "X"
- chr_length = parseFloat(@chromosomes[20])
- else
- chr_length = parseFloat(@chromosomes[result.chr])
- if not(result.chr in chr_seen)
- chr_seen.push(result.chr)
- chr_lengths.push(chr_length)
- if result.chr != "1"
- @total_length += parseFloat(chr_lengths[chr_lengths.length - 2])
+ get_max_chr: () ->
+ max_chr = 0
+ for result in @qtl_results
+ chr = parseInt(result.chr)
+ if not _.isNaN(chr)
+ if chr > max_chr
+ max_chr = chr
+ return max_chr
+
+ get_chr_lengths: () ->
+ ###
+ #Gets a list of both individual and cumulative (the position of one on the graph
+ #is its own length plus the lengths of all preceding chromosomes) lengths in order
+ #to draw the vertical lines separating chromosomes and the chromosome labels
+ #
+ ###
+
+ console.log("@chromosomes: ", @chromosomes)
+
+ cumulative_chr_lengths = []
+ chr_lengths = []
+ total_length = 0
+ for key of @chromosomes
+ this_length = @chromosomes[key]
+ chr_lengths.push(this_length)
+ cumulative_chr_lengths.push(total_length + this_length)
+ total_length += this_length
+
+ console.log("chr_lengths: ", chr_lengths)
+
+ return [chr_lengths, cumulative_chr_lengths]
+
+ get_qtl_count: () ->
+ high_qtl_count = 0
+ for result in js_data.qtl_results
+ if result.lod_score > 1
+ high_qtl_count += 1
+ console.log("high_qtl_count:", high_qtl_count)
+
+ if high_qtl_count > 10000
+ @y_axis_filter = 2
+ else if high_qtl_count > 1000
+ @y_axis_filter = 1
+ else
+ @y_axis_filter = 0
+
+
+ create_coordinates: () ->
+ chr_lengths = []
+ chr_seen = []
+ for result in js_data.qtl_results
+ if result.chr == "X"
+ chr_length = parseFloat(@chromosomes[20])
+ else
+ chr_length = parseFloat(@chromosomes[result.chr])
+ if not(result.chr in chr_seen)
+ chr_seen.push(result.chr)
+ chr_lengths.push(chr_length)
+ console.log("result.chr:", result.chr)
+ console.log("total_length:", @total_length)
+ if parseInt(result.chr) != 1
+ console.log("plus:", chr_lengths.length - 2)
+ @total_length += parseFloat(chr_lengths[chr_lengths.length - 2])
+ if result.lod_score > @y_axis_filter
@x_coords.push(@total_length + parseFloat(result.Mb))
@y_coords.push(result.lod_score)
@marker_names.push(result.name)
- @total_length += parseFloat(chr_lengths[chr_lengths.length-1])
- #console.log("chr_lengths: ", chr_lengths)
+ @total_length += parseFloat(chr_lengths[chr_lengths.length-1])
- show_marker_in_table: (marker_info) ->
- console.log("in show_marker_in_table")
- ### Searches for the select marker in the results table below ###
- if marker_info
- marker_name = marker_info[2]
- else
- marker_name = ""
- $("#qtl_results_filter").find("input:first").val(marker_name).keypress()
+ show_marker_in_table: (marker_info) ->
+ console.log("in show_marker_in_table")
+ ### Searches for the select marker in the results table below ###
+ if marker_info
+ marker_name = marker_info[2]
+ $("#qtl_results_filter").find("input:first").val(marker_name).change()
+ #else
+ # marker_name = ""
+ #$("#qtl_results_filter").find("input:first").val(marker_name).change()
- create_svg: () ->
- svg = d3.select("#manhattan_plots")
- .append("svg")
- .attr("class", "manhattan_plot")
- .attr("width", @plot_width+@x_buffer)
- .attr("height", @plot_height+@y_buffer)
-
- return svg
+ create_svg: () ->
+ svg = d3.select("#manhattan_plot")
+ .append("svg")
+ .attr("class", "manhattan_plot")
+ .attr("width", @plot_width+@x_buffer)
+ .attr("height", @plot_height+@y_buffer)
+ .append("g")
+ #.call(d3.behavior.zoom().x(@x_scale).y(@y_scale).scaleExtent([1,8]).on("zoom", () ->
+ # @svg.selectAll("circle")
+ # .attr("transform", transform)
+ #))
+ return svg
- create_graph: () ->
- @add_border()
- @add_x_axis()
- @add_y_axis()
- @add_chr_lines()
- @fill_chr_areas()
- @add_chr_labels()
- @add_plot_points()
+ #zoom: () ->
+ # #@svg.selectAll.attr("transform", @transform)
+ # @svg.selectAll("circle")
+ # .attr("transform", transform)
+ #
+ #transform: (d) ->
+ # return "translate(" + @x_scale(d[0]) + "," + @y_scale(d[1]) + ")"
- add_border: () ->
- border_coords = [[@y_buffer, @plot_height, @x_buffer, @x_buffer],
- [@y_buffer, @plot_height, @plot_width, @plot_width],
- [@y_buffer, @y_buffer, @x_buffer, @plot_width],
- [@plot_height, @plot_height, @x_buffer, @plot_width]]
+ create_graph: () ->
+ @add_border()
+ @add_x_axis()
+ @add_y_axis()
+ @add_axis_labels()
+ @add_chr_lines()
+ #@fill_chr_areas()
+ @add_chr_labels()
+ @add_plot_points()
+ #@create_zoom_pane()
- @svg.selectAll("line")
- .data(border_coords)
- .enter()
- .append("line")
- .attr("y1", (d) =>
- return d[0]
- )
- .attr("y2", (d) =>
- return d[1]
- )
- .attr("x1", (d) =>
- return d[2]
- )
- .attr("x2", (d) =>
- return d[3]
- )
- .style("stroke", "#000")
+ add_border: () ->
+ border_coords = [[@y_buffer, @plot_height, @x_buffer, @x_buffer],
+ [@y_buffer, @plot_height, @plot_width, @plot_width],
+ [@y_buffer, @y_buffer, @x_buffer, @plot_width],
+ [@plot_height, @plot_height, @x_buffer, @plot_width]]
- create_scales: () ->
+ @svg.selectAll("line")
+ .data(border_coords)
+ .enter()
+ .append("line")
+ .attr("y1", (d) =>
+ return d[0]
+ )
+ .attr("y2", (d) =>
+ return d[1]
+ )
+ .attr("x1", (d) =>
+ return d[2]
+ )
+ .attr("x2", (d) =>
+ return d[3]
+ )
+ .style("stroke", "#000")
+
+ create_scales: () ->
+ #@x_scale = d3.scale.linear()
+ # .domain([0, d3.max(@x_coords)])
+ # .range([@x_buffer, @plot_width])
+ if '24' of @chromosomes
+ console.log("@chromosomes[24]:", @chromosomes['24'])
+ console.log("@chromosomes[23]:", @chromosomes['23'])
+ console.log("@total_length:", @total_length)
+ console.log("d3.max(@xcoords):", d3.max(@x_coords))
@x_scale = d3.scale.linear()
- .domain([0, d3.max(@x_coords)])
+ .domain([0, (@total_length + @chromosomes['24'])])
.range([@x_buffer, @plot_width])
+ else
+ @x_scale = d3.scale.linear()
+ .domain([0, (@total_length + @chromosomes['20'])])
+ .range([@x_buffer, @plot_width])
+ @y_scale = d3.scale.linear()
+ .domain([@y_axis_filter, @y_max])
+ .range([@plot_height, @y_buffer])
- @y_scale = d3.scale.linear()
- .domain([0, @y_max])
- .range([@plot_height, @y_buffer])
-
- create_x_axis_tick_values: () ->
- tick_vals = []
- for val in [25..@cumulative_chr_lengths[0]] when val%25 == 0
- tick_vals.push(val)
+ create_x_axis_tick_values: () ->
+ tick_vals = []
+ for val in [25..@cumulative_chr_lengths[0]] when val%25 == 0
+ tick_vals.push(val)
+
+ for length, i in @cumulative_chr_lengths
+ if i == 0
+ continue
+ chr_ticks = []
+ tick_count = Math.floor(@chr_lengths[i]/25)
+ tick_val = parseInt(@cumulative_chr_lengths[i-1])
+ for tick in [0..(tick_count-1)]
+ tick_val += 25
+ chr_ticks.push(tick_val)
+ Array::push.apply tick_vals, chr_ticks
- for length, i in @cumulative_chr_lengths
- if i == 0
- continue
- chr_ticks = []
- tick_count = Math.floor(@chr_lengths[i]/25)
- tick_val = parseInt(@cumulative_chr_lengths[i-1])
- for tick in [0..(tick_count-1)]
- tick_val += 25
- chr_ticks.push(tick_val)
- Array::push.apply tick_vals, chr_ticks
-
- #console.log("tick_vals:", tick_vals)
- return tick_vals
+ #console.log("tick_vals:", tick_vals)
+ return tick_vals
- add_x_axis: () ->
- xAxis = d3.svg.axis()
- .scale(@x_scale)
- .orient("bottom")
- .tickValues(@create_x_axis_tick_values())
+ add_x_axis: () ->
+ @xAxis = d3.svg.axis()
+ .scale(@x_scale)
+ .orient("bottom")
+ .tickValues(@create_x_axis_tick_values())
- next_chr = 1
- tmp_tick_val = 0
- xAxis.tickFormat((d) =>
- d3.format("d") #format as integer
- if d < @cumulative_chr_lengths[0]
- tick_val = d
+ next_chr = 1
+ tmp_tick_val = 0
+ @xAxis.tickFormat((d) =>
+ d3.format("d") #format as integer
+ if d < @cumulative_chr_lengths[0]
+ tick_val = d
+ else
+ next_chr_length = @cumulative_chr_lengths[next_chr]
+ if d > next_chr_length
+ next_chr += 1
+ tmp_tick_val = 25
+ tick_val = tmp_tick_val
else
- next_chr_length = @cumulative_chr_lengths[next_chr]
- if d > next_chr_length
- next_chr += 1
- tmp_tick_val = 25
- tick_val = tmp_tick_val
- else
- tmp_tick_val += 25
- tick_val = tmp_tick_val
- return (tick_val)
- )
-
- @svg.append("g")
- .attr("class", "x_axis")
- .attr("transform", "translate(0," + @plot_height + ")")
- .call(xAxis)
- .selectAll("text")
- .attr("text-anchor", "right")
- .attr("dx", "-1.6em")
- .attr("transform", (d) =>
- return "translate(-12,0) rotate(-90)"
- )
- #.attr("dy", "-1.0em")
-
+ tmp_tick_val += 25
+ tick_val = tmp_tick_val
+ return (tick_val)
+ )
- add_y_axis: () ->
- yAxis = d3.svg.axis()
- .scale(@y_scale)
- .orient("left")
- .ticks(5)
+ @svg.append("g")
+ .attr("class", "x_axis")
+ .attr("transform", "translate(0," + @plot_height + ")")
+ .call(@xAxis)
+ .selectAll("text")
+ .attr("text-anchor", "right")
+ .attr("dx", "-1.6em")
+ .attr("transform", (d) =>
+ return "translate(-12,0) rotate(-90)"
+ )
+ #.attr("dy", "-1.0em")
+
+
+ add_y_axis: () ->
+ @yAxis = d3.svg.axis()
+ .scale(@y_scale)
+ .orient("left")
+ .ticks(5)
+
+ @svg.append("g")
+ .attr("class", "y_axis")
+ .attr("transform", "translate(" + @x_buffer + ",0)")
+ .call(@yAxis)
- @svg.append("g")
- .attr("class", "y_axis")
- .attr("transform", "translate(" + @x_buffer + ",0)")
- .call(yAxis)
+ add_axis_labels: () ->
+ @svg.append("text")
+ .attr("transform","rotate(-90)")
+ .attr("y", 0 - (@plot_height / 2))
+ .attr("x", @x_buffer)
+ .attr("dy", "1em")
+ .style("text-anchor", "middle")
+ .text("LOD Score")
- add_chr_lines: () ->
- @svg.selectAll("line")
- .data(@cumulative_chr_lengths, (d) =>
- return d
- )
- .enter()
- .append("line")
- .attr("x1", @x_scale)
- .attr("x2", @x_scale)
- .attr("y1", @y_buffer)
- .attr("y2", @plot_height)
- .style("stroke", "#ccc")
-
- fill_chr_areas: () ->
- @svg.selectAll("rect.chr_fill_area_1")
- .data(_.zip(@chr_lengths, @cumulative_chr_lengths), (d) =>
- return d
- )
- .enter()
- .append("rect")
- .attr("class", "chr_fill_area_1")
- .attr("x", (d, i) =>
- if i == 0
- return @x_scale(0)
- else
- return @x_scale(@cumulative_chr_lengths[i-1])
- )
- .attr("y", @y_buffer)
- .attr("width", (d) =>
- return @x_scale(d[0])
- )
- .attr("height", @plot_height-@y_buffer)
+ add_chr_lines: () ->
+ @svg.selectAll("line")
+ .data(@cumulative_chr_lengths, (d) =>
+ return d
+ )
+ .enter()
+ .append("line")
+ .attr("x1", @x_scale)
+ .attr("x2", @x_scale)
+ .attr("y1", @y_buffer)
+ .attr("y2", @plot_height)
+ .style("stroke", "#ccc")
+
+
+ fill_chr_areas: () ->
+ console.log("cumu_chr_lengths:", @cumulative_chr_lengths)
+ console.log("example:", @x_scale(@cumulative_chr_lengths[0]))
+ @svg.selectAll("rect.chr_fill_area")
+ .data(_.zip(@chr_lengths, @cumulative_chr_lengths), (d) =>
+ return d
+ )
+ .enter()
+ .append("rect")
+ .attr("x", (d) =>
+ if i == 0
+ return @x_scale(0)
+ else
+ return @x_scale(d[1])
+ )
+ .attr("y", @y_buffer)
+ .attr("width", (d) =>
+ return @x_scale(d[0])
+ )
+ .attr("height", @plot_height-@y_buffer)
+ #.attr("fill", (d, i) =>
+ # if i%2
+ # return "whitesmoke"
+ # else
+ # return "none"
+ #)
+
+ fill_chr_areas2: () ->
+ console.log("cumu_chr_lengths:", @cumulative_chr_lengths)
+ console.log("example:", @x_scale(@cumulative_chr_lengths[0]))
+ @svg.selectAll("rect.chr_fill_area")
+ .data(_.zip(@chr_lengths, @cumulative_chr_lengths), (d) =>
+ return d
+ )
+ .enter()
+ .append("rect")
+ .attr("x", (d) =>
+ if i == 0
+ return @x_scale(0)
+ else
+ return @x_scale(d[1])
+ )
+ .attr("y", @y_buffer)
+ .attr("width", (d) =>
+ return @x_scale(d[0])
+ )
+ .attr("height", @plot_height-@y_buffer)
+ .attr("fill", (d, i) =>
+ return "whitesmoke"
+ #if i%2
+ # return "whitesmoke"
+ #else
+ # return "none"
+ )
- add_chr_labels: () ->
- chr_names = []
- for key of @chromosomes
- chr_names.push(key)
- chr_info = _.zip(chr_names, @chr_lengths, @cumulative_chr_lengths)
- @svg.selectAll("text")
- .data(chr_info, (d) =>
- return d
- )
- .enter()
- .append("text")
- .text((d) =>
+ add_chr_labels: () ->
+ chr_names = []
+ for key of @chromosomes
+ chr_names.push(key)
+ chr_info = _.zip(chr_names, @chr_lengths, @cumulative_chr_lengths)
+ @svg.selectAll("text")
+ .data(chr_info, (d) =>
+ return d
+ )
+ .enter()
+ .append("text")
+ .attr("class", "chr_label")
+ .text((d) =>
+ if d[0] == "23"
+ return "X"
+ else if d[0] == "24"
+ return "X/Y"
+ else
return d[0]
- )
- .attr("x", (d) =>
- return @x_scale(d[2] - d[1]/2)
- )
- .attr("y", @plot_height * 0.1)
- .attr("dx", "0em")
- .attr("text-anchor", "middle")
- .attr("font-family", "sans-serif")
- .attr("font-size", "18px")
- .attr("fill", "grey")
+ )
+ .attr("x", (d) =>
+ return @x_scale(d[2] - d[1]/2)
+ )
+ .attr("y", @plot_height * 0.1)
+ .attr("dx", "0em")
+ .attr("text-anchor", "middle")
+ .attr("font-family", "sans-serif")
+ .attr("font-size", "18px")
+ .attr("fill", "black")
+ .on("click", (d) =>
+ this_chr = d
+ @redraw_plot(d)
+ )
- add_plot_points: () ->
- @svg.selectAll("circle")
- .data(@plot_coordinates)
- .enter()
- .append("circle")
- .attr("cx", (d) =>
- return parseFloat(@x_buffer) + ((parseFloat(@plot_width)-parseFloat(@x_buffer)) * d[0]/parseFloat(@x_max))
- )
- .attr("cy", (d) =>
- return @plot_height - ((@plot_height-@y_buffer) * d[1]/@y_max)
- )
- .attr("r", 2)
- .attr("id", (d) =>
- return "point_" + String(d[2])
- )
- .classed("circle", true)
- .on("mouseover", (d) =>
- console.log("d3.event is:", d3.event)
- console.log("d is:", d)
- this_id = "point_" + String(d[2])
- d3.select("#" + this_id).classed("d3_highlight", true)
- .attr("r", 5)
- .attr("fill", "yellow")
- .call(@show_marker_in_table(d))
- )
- .on("mouseout", (d) =>
- this_id = "point_" + String(d[2])
- d3.select("#" + this_id).classed("d3_highlight", false)
- .attr("r", 2)
- .attr("fill", "black")
- .call(@show_marker_in_table())
- )
+ add_plot_points: () ->
+ @plot_point = @svg.selectAll("circle")
+ .data(@plot_coordinates)
+ .enter()
+ .append("circle")
+ .attr("cx", (d) =>
+ return @x_scale(d[0])
+ )
+ .attr("cy", (d) =>
+ return @y_scale(d[1])
+ )
+ .attr("r", 2)
+ .attr("id", (d) =>
+ return "point_" + String(d[2])
+ )
+ .classed("circle", true)
+ .on("mouseover", (d) =>
+ console.log("d3.event is:", d3.event)
+ console.log("d is:", d)
+ this_id = "point_" + String(d[2])
+ d3.select("#" + this_id).classed("d3_highlight", true)
+ .attr("r", 5)
+ .attr("fill", "yellow")
+ .call(@show_marker_in_table(d))
+ )
+ .on("mouseout", (d) =>
+ this_id = "point_" + String(d[2])
+ d3.select("#" + this_id).classed("d3_highlight", false)
+ .attr("r", 2)
+ .attr("fill", "black")
+ )
+
+ redraw_plot: (chr_ob) ->
+ console.log("chr_name is:", chr_ob[0])
+ console.log("chr_length is:", chr_ob[1])
+ $('#manhattan_plot').remove()
+ $('#manhattan_plot_container').append('<div id="manhattan_plot"></div>')
+ root.chr_plot = new Chr_Manhattan_Plot(600, 1200, chr_ob)
+
+
+ create_zoom_pane: () ->
+ zoom = d3.behavior.zoom()
+ .on("zoom", draw);
+
+ @svg.append("rect")
+ .attr("class", "pane")
+ .attr("width", @plot_width)
+ .attr("height", @plot_height)
+ .call(zoom)
+
+ draw: () ->
+ @svg.select("g.x_axis").call(@xAxis);
+ @svg.select("g.y_axis").call(@yAxis);
+ @svg.select("path.area").attr("d", area);
+ @svg.select("path.line").attr("d", line);
+
- console.time('Create manhattan plot')
- new Manhattan_Plot(600, 1200)
- console.timeEnd('Create manhattan plot') \ No newline at end of file
+ #console.time('Create manhattan plot')
+ #new Manhattan_Plot(600, 1200)
+ #console.timeEnd('Create manhattan plot')
+
+root.Manhattan_Plot = new Manhattan_Plot(600, 1200) \ No newline at end of file
diff --git a/wqflask/wqflask/static/new/javascript/marker_regression.js b/wqflask/wqflask/static/new/javascript/marker_regression.js
index cdf37671..86509316 100644
--- a/wqflask/wqflask/static/new/javascript/marker_regression.js
+++ b/wqflask/wqflask/static/new/javascript/marker_regression.js
@@ -1,286 +1,374 @@
// Generated by CoffeeScript 1.6.1
(function() {
- var __indexOf = [].indexOf || function(item) { for (var i = 0, l = this.length; i < l; i++) { if (i in this && this[i] === item) return i; } return -1; };
+ var Manhattan_Plot, root,
+ __indexOf = [].indexOf || function(item) { for (var i = 0, l = this.length; i < l; i++) { if (i in this && this[i] === item) return i; } return -1; };
- $(function() {
- var Manhattan_Plot;
- Manhattan_Plot = (function() {
+ root = typeof exports !== "undefined" && exports !== null ? exports : this;
- function Manhattan_Plot(plot_height, plot_width) {
- var _ref;
- this.plot_height = plot_height;
- this.plot_width = plot_width;
- this.qtl_results = js_data.qtl_results;
- console.log("qtl_results are:", this.qtl_results);
- this.chromosomes = js_data.chromosomes;
- this.total_length = 0;
- this.max_chr = this.get_max_chr();
- this.x_coords = [];
- this.y_coords = [];
- this.marker_names = [];
- console.time('Create coordinates');
- this.create_coordinates();
- console.log("@x_coords: ", this.x_coords);
- console.log("@y_coords: ", this.y_coords);
- console.timeEnd('Create coordinates');
- _ref = this.get_chr_lengths(), this.chr_lengths = _ref[0], this.cumulative_chr_lengths = _ref[1];
- this.x_buffer = this.plot_width / 30;
- this.y_buffer = this.plot_height / 20;
- this.x_max = this.total_length;
- console.log("@x_max: ", this.x_max);
- console.log("@x_buffer: ", this.x_buffer);
- this.y_max = d3.max(this.y_coords) * 1.2;
- this.svg = this.create_svg();
- this.plot_coordinates = _.zip(this.x_coords, this.y_coords, this.marker_names);
- this.plot_height -= this.y_buffer;
- this.create_scales();
- console.time('Create graph');
- this.create_graph();
- console.timeEnd('Create graph');
- }
+ Manhattan_Plot = (function() {
+
+ function Manhattan_Plot(plot_height, plot_width) {
+ var _ref;
+ this.plot_height = plot_height;
+ this.plot_width = plot_width;
+ this.qtl_results = js_data.qtl_results;
+ console.log("qtl_results are:", this.qtl_results);
+ this.chromosomes = js_data.chromosomes;
+ this.total_length = 0;
+ this.max_chr = this.get_max_chr();
+ this.x_coords = [];
+ this.y_coords = [];
+ this.marker_names = [];
+ console.time('Create coordinates');
+ this.get_qtl_count();
+ this.create_coordinates();
+ console.log("@x_coords: ", this.x_coords);
+ console.log("@y_coords: ", this.y_coords);
+ console.timeEnd('Create coordinates');
+ _ref = this.get_chr_lengths(), this.chr_lengths = _ref[0], this.cumulative_chr_lengths = _ref[1];
+ this.x_buffer = this.plot_width / 30;
+ this.y_buffer = this.plot_height / 20;
+ this.x_max = this.total_length;
+ console.log("@x_max: ", this.x_max);
+ console.log("@x_buffer: ", this.x_buffer);
+ this.y_max = d3.max(this.y_coords) * 1.2;
+ this.svg = this.create_svg();
+ console.log("svg created");
+ this.plot_coordinates = _.zip(this.x_coords, this.y_coords, this.marker_names);
+ console.log("coordinates:", this.plot_coordinates);
+ this.plot_height -= this.y_buffer;
+ this.create_scales();
+ console.time('Create graph');
+ this.create_graph();
+ console.timeEnd('Create graph');
+ }
- Manhattan_Plot.prototype.get_max_chr = function() {
- var chr, max_chr, result, _i, _len, _ref;
- max_chr = 0;
- _ref = this.qtl_results;
- for (_i = 0, _len = _ref.length; _i < _len; _i++) {
- result = _ref[_i];
- chr = parseInt(result.chr);
- if (!_.isNaN(chr)) {
- if (chr > max_chr) {
- max_chr = chr;
- }
+ Manhattan_Plot.prototype.get_max_chr = function() {
+ var chr, max_chr, result, _i, _len, _ref;
+ max_chr = 0;
+ _ref = this.qtl_results;
+ for (_i = 0, _len = _ref.length; _i < _len; _i++) {
+ result = _ref[_i];
+ chr = parseInt(result.chr);
+ if (!_.isNaN(chr)) {
+ if (chr > max_chr) {
+ max_chr = chr;
}
}
- return max_chr;
- };
+ }
+ return max_chr;
+ };
- Manhattan_Plot.prototype.get_chr_lengths = function() {
- /*
- #Gets a list of both individual and cumulative (the position of one on the graph
- #is its own length plus the lengths of all preceding chromosomes) lengths in order
- #to draw the vertical lines separating chromosomes and the chromosome labels
- #
- */
+ Manhattan_Plot.prototype.get_chr_lengths = function() {
+ /*
+ #Gets a list of both individual and cumulative (the position of one on the graph
+ #is its own length plus the lengths of all preceding chromosomes) lengths in order
+ #to draw the vertical lines separating chromosomes and the chromosome labels
+ #
+ */
+
+ var chr_lengths, cumulative_chr_lengths, key, this_length, total_length;
+ console.log("@chromosomes: ", this.chromosomes);
+ cumulative_chr_lengths = [];
+ chr_lengths = [];
+ total_length = 0;
+ for (key in this.chromosomes) {
+ this_length = this.chromosomes[key];
+ chr_lengths.push(this_length);
+ cumulative_chr_lengths.push(total_length + this_length);
+ total_length += this_length;
+ }
+ console.log("chr_lengths: ", chr_lengths);
+ return [chr_lengths, cumulative_chr_lengths];
+ };
- var chr_lengths, cumulative_chr_lengths, key, this_length, total_length;
- console.log("@chromosomes: ", this.chromosomes);
- cumulative_chr_lengths = [];
- chr_lengths = [];
- total_length = 0;
- for (key in this.chromosomes) {
- this_length = this.chromosomes[key];
- chr_lengths.push(this_length);
- cumulative_chr_lengths.push(total_length + this_length);
- total_length += this_length;
+ Manhattan_Plot.prototype.get_qtl_count = function() {
+ var high_qtl_count, result, _i, _len, _ref;
+ high_qtl_count = 0;
+ _ref = js_data.qtl_results;
+ for (_i = 0, _len = _ref.length; _i < _len; _i++) {
+ result = _ref[_i];
+ if (result.lod_score > 1) {
+ high_qtl_count += 1;
}
- console.log("chr_lengths: ", chr_lengths);
- return [chr_lengths, cumulative_chr_lengths];
- };
+ }
+ console.log("high_qtl_count:", high_qtl_count);
+ if (high_qtl_count > 10000) {
+ return this.y_axis_filter = 2;
+ } else if (high_qtl_count > 1000) {
+ return this.y_axis_filter = 1;
+ } else {
+ return this.y_axis_filter = 0;
+ }
+ };
- Manhattan_Plot.prototype.create_coordinates = function() {
- var chr_length, chr_lengths, chr_seen, result, _i, _len, _ref, _ref1;
- chr_lengths = [];
- chr_seen = [];
- _ref = js_data.qtl_results;
- for (_i = 0, _len = _ref.length; _i < _len; _i++) {
- result = _ref[_i];
- if (result.chr === "X") {
- chr_length = parseFloat(this.chromosomes[20]);
- } else {
- chr_length = parseFloat(this.chromosomes[result.chr]);
- }
- if (!(_ref1 = result.chr, __indexOf.call(chr_seen, _ref1) >= 0)) {
- chr_seen.push(result.chr);
- chr_lengths.push(chr_length);
- if (result.chr !== "1") {
- this.total_length += parseFloat(chr_lengths[chr_lengths.length - 2]);
- }
+ Manhattan_Plot.prototype.create_coordinates = function() {
+ var chr_length, chr_lengths, chr_seen, result, _i, _len, _ref, _ref1;
+ chr_lengths = [];
+ chr_seen = [];
+ _ref = js_data.qtl_results;
+ for (_i = 0, _len = _ref.length; _i < _len; _i++) {
+ result = _ref[_i];
+ if (result.chr === "X") {
+ chr_length = parseFloat(this.chromosomes[20]);
+ } else {
+ chr_length = parseFloat(this.chromosomes[result.chr]);
+ }
+ if (!(_ref1 = result.chr, __indexOf.call(chr_seen, _ref1) >= 0)) {
+ chr_seen.push(result.chr);
+ chr_lengths.push(chr_length);
+ console.log("result.chr:", result.chr);
+ console.log("total_length:", this.total_length);
+ if (parseInt(result.chr) !== 1) {
+ console.log("plus:", chr_lengths.length - 2);
+ this.total_length += parseFloat(chr_lengths[chr_lengths.length - 2]);
}
+ }
+ if (result.lod_score > this.y_axis_filter) {
this.x_coords.push(this.total_length + parseFloat(result.Mb));
this.y_coords.push(result.lod_score);
this.marker_names.push(result.name);
}
- return this.total_length += parseFloat(chr_lengths[chr_lengths.length - 1]);
- };
+ }
+ return this.total_length += parseFloat(chr_lengths[chr_lengths.length - 1]);
+ };
- Manhattan_Plot.prototype.show_marker_in_table = function(marker_info) {
- var marker_name;
- console.log("in show_marker_in_table");
- /* Searches for the select marker in the results table below
- */
+ Manhattan_Plot.prototype.show_marker_in_table = function(marker_info) {
+ var marker_name;
+ console.log("in show_marker_in_table");
+ /* Searches for the select marker in the results table below
+ */
- if (marker_info) {
- marker_name = marker_info[2];
- } else {
- marker_name = "";
- }
- return $("#qtl_results_filter").find("input:first").val(marker_name).keypress();
- };
+ if (marker_info) {
+ marker_name = marker_info[2];
+ return $("#qtl_results_filter").find("input:first").val(marker_name).change();
+ }
+ };
- Manhattan_Plot.prototype.create_svg = function() {
- var svg;
- svg = d3.select("#manhattan_plots").append("svg").attr("class", "manhattan_plot").attr("width", this.plot_width + this.x_buffer).attr("height", this.plot_height + this.y_buffer);
- return svg;
- };
+ Manhattan_Plot.prototype.create_svg = function() {
+ var svg;
+ svg = d3.select("#manhattan_plot").append("svg").attr("class", "manhattan_plot").attr("width", this.plot_width + this.x_buffer).attr("height", this.plot_height + this.y_buffer).append("g");
+ return svg;
+ };
- Manhattan_Plot.prototype.create_graph = function() {
- this.add_border();
- this.add_x_axis();
- this.add_y_axis();
- this.add_chr_lines();
- this.fill_chr_areas();
- this.add_chr_labels();
- return this.add_plot_points();
- };
+ Manhattan_Plot.prototype.create_graph = function() {
+ this.add_border();
+ this.add_x_axis();
+ this.add_y_axis();
+ this.add_axis_labels();
+ this.add_chr_lines();
+ this.add_chr_labels();
+ return this.add_plot_points();
+ };
- Manhattan_Plot.prototype.add_border = function() {
- var border_coords,
- _this = this;
- border_coords = [[this.y_buffer, this.plot_height, this.x_buffer, this.x_buffer], [this.y_buffer, this.plot_height, this.plot_width, this.plot_width], [this.y_buffer, this.y_buffer, this.x_buffer, this.plot_width], [this.plot_height, this.plot_height, this.x_buffer, this.plot_width]];
- return this.svg.selectAll("line").data(border_coords).enter().append("line").attr("y1", function(d) {
- return d[0];
- }).attr("y2", function(d) {
- return d[1];
- }).attr("x1", function(d) {
- return d[2];
- }).attr("x2", function(d) {
- return d[3];
- }).style("stroke", "#000");
- };
+ Manhattan_Plot.prototype.add_border = function() {
+ var border_coords,
+ _this = this;
+ border_coords = [[this.y_buffer, this.plot_height, this.x_buffer, this.x_buffer], [this.y_buffer, this.plot_height, this.plot_width, this.plot_width], [this.y_buffer, this.y_buffer, this.x_buffer, this.plot_width], [this.plot_height, this.plot_height, this.x_buffer, this.plot_width]];
+ return this.svg.selectAll("line").data(border_coords).enter().append("line").attr("y1", function(d) {
+ return d[0];
+ }).attr("y2", function(d) {
+ return d[1];
+ }).attr("x1", function(d) {
+ return d[2];
+ }).attr("x2", function(d) {
+ return d[3];
+ }).style("stroke", "#000");
+ };
- Manhattan_Plot.prototype.create_scales = function() {
- this.x_scale = d3.scale.linear().domain([0, d3.max(this.x_coords)]).range([this.x_buffer, this.plot_width]);
- return this.y_scale = d3.scale.linear().domain([0, this.y_max]).range([this.plot_height, this.y_buffer]);
- };
+ Manhattan_Plot.prototype.create_scales = function() {
+ if ('24' in this.chromosomes) {
+ console.log("@chromosomes[24]:", this.chromosomes['24']);
+ console.log("@chromosomes[23]:", this.chromosomes['23']);
+ console.log("@total_length:", this.total_length);
+ console.log("d3.max(@xcoords):", d3.max(this.x_coords));
+ this.x_scale = d3.scale.linear().domain([0, this.total_length + this.chromosomes['24']]).range([this.x_buffer, this.plot_width]);
+ } else {
+ this.x_scale = d3.scale.linear().domain([0, this.total_length + this.chromosomes['20']]).range([this.x_buffer, this.plot_width]);
+ }
+ return this.y_scale = d3.scale.linear().domain([this.y_axis_filter, this.y_max]).range([this.plot_height, this.y_buffer]);
+ };
- Manhattan_Plot.prototype.create_x_axis_tick_values = function() {
- var chr_ticks, i, length, tick, tick_count, tick_val, tick_vals, val, _i, _j, _k, _len, _ref, _ref1, _ref2;
- tick_vals = [];
- for (val = _i = 25, _ref = this.cumulative_chr_lengths[0]; 25 <= _ref ? _i <= _ref : _i >= _ref; val = 25 <= _ref ? ++_i : --_i) {
- if (val % 25 === 0) {
- tick_vals.push(val);
- }
+ Manhattan_Plot.prototype.create_x_axis_tick_values = function() {
+ var chr_ticks, i, length, tick, tick_count, tick_val, tick_vals, val, _i, _j, _k, _len, _ref, _ref1, _ref2;
+ tick_vals = [];
+ for (val = _i = 25, _ref = this.cumulative_chr_lengths[0]; 25 <= _ref ? _i <= _ref : _i >= _ref; val = 25 <= _ref ? ++_i : --_i) {
+ if (val % 25 === 0) {
+ tick_vals.push(val);
}
- _ref1 = this.cumulative_chr_lengths;
- for (i = _j = 0, _len = _ref1.length; _j < _len; i = ++_j) {
- length = _ref1[i];
- if (i === 0) {
- continue;
- }
- chr_ticks = [];
- tick_count = Math.floor(this.chr_lengths[i] / 25);
- tick_val = parseInt(this.cumulative_chr_lengths[i - 1]);
- for (tick = _k = 0, _ref2 = tick_count - 1; 0 <= _ref2 ? _k <= _ref2 : _k >= _ref2; tick = 0 <= _ref2 ? ++_k : --_k) {
- tick_val += 25;
- chr_ticks.push(tick_val);
- }
- Array.prototype.push.apply(tick_vals, chr_ticks);
+ }
+ _ref1 = this.cumulative_chr_lengths;
+ for (i = _j = 0, _len = _ref1.length; _j < _len; i = ++_j) {
+ length = _ref1[i];
+ if (i === 0) {
+ continue;
+ }
+ chr_ticks = [];
+ tick_count = Math.floor(this.chr_lengths[i] / 25);
+ tick_val = parseInt(this.cumulative_chr_lengths[i - 1]);
+ for (tick = _k = 0, _ref2 = tick_count - 1; 0 <= _ref2 ? _k <= _ref2 : _k >= _ref2; tick = 0 <= _ref2 ? ++_k : --_k) {
+ tick_val += 25;
+ chr_ticks.push(tick_val);
}
- return tick_vals;
- };
+ Array.prototype.push.apply(tick_vals, chr_ticks);
+ }
+ return tick_vals;
+ };
- Manhattan_Plot.prototype.add_x_axis = function() {
- var next_chr, tmp_tick_val, xAxis,
- _this = this;
- xAxis = d3.svg.axis().scale(this.x_scale).orient("bottom").tickValues(this.create_x_axis_tick_values());
- next_chr = 1;
- tmp_tick_val = 0;
- xAxis.tickFormat(function(d) {
- var next_chr_length, tick_val;
- d3.format("d");
- if (d < _this.cumulative_chr_lengths[0]) {
- tick_val = d;
+ Manhattan_Plot.prototype.add_x_axis = function() {
+ var next_chr, tmp_tick_val,
+ _this = this;
+ this.xAxis = d3.svg.axis().scale(this.x_scale).orient("bottom").tickValues(this.create_x_axis_tick_values());
+ next_chr = 1;
+ tmp_tick_val = 0;
+ this.xAxis.tickFormat(function(d) {
+ var next_chr_length, tick_val;
+ d3.format("d");
+ if (d < _this.cumulative_chr_lengths[0]) {
+ tick_val = d;
+ } else {
+ next_chr_length = _this.cumulative_chr_lengths[next_chr];
+ if (d > next_chr_length) {
+ next_chr += 1;
+ tmp_tick_val = 25;
+ tick_val = tmp_tick_val;
} else {
- next_chr_length = _this.cumulative_chr_lengths[next_chr];
- if (d > next_chr_length) {
- next_chr += 1;
- tmp_tick_val = 25;
- tick_val = tmp_tick_val;
- } else {
- tmp_tick_val += 25;
- tick_val = tmp_tick_val;
- }
+ tmp_tick_val += 25;
+ tick_val = tmp_tick_val;
}
- return tick_val;
- });
- return this.svg.append("g").attr("class", "x_axis").attr("transform", "translate(0," + this.plot_height + ")").call(xAxis).selectAll("text").attr("text-anchor", "right").attr("dx", "-1.6em").attr("transform", function(d) {
- return "translate(-12,0) rotate(-90)";
- });
- };
+ }
+ return tick_val;
+ });
+ return this.svg.append("g").attr("class", "x_axis").attr("transform", "translate(0," + this.plot_height + ")").call(this.xAxis).selectAll("text").attr("text-anchor", "right").attr("dx", "-1.6em").attr("transform", function(d) {
+ return "translate(-12,0) rotate(-90)";
+ });
+ };
- Manhattan_Plot.prototype.add_y_axis = function() {
- var yAxis;
- yAxis = d3.svg.axis().scale(this.y_scale).orient("left").ticks(5);
- return this.svg.append("g").attr("class", "y_axis").attr("transform", "translate(" + this.x_buffer + ",0)").call(yAxis);
- };
+ Manhattan_Plot.prototype.add_y_axis = function() {
+ this.yAxis = d3.svg.axis().scale(this.y_scale).orient("left").ticks(5);
+ return this.svg.append("g").attr("class", "y_axis").attr("transform", "translate(" + this.x_buffer + ",0)").call(this.yAxis);
+ };
- Manhattan_Plot.prototype.add_chr_lines = function() {
- var _this = this;
- return this.svg.selectAll("line").data(this.cumulative_chr_lengths, function(d) {
- return d;
- }).enter().append("line").attr("x1", this.x_scale).attr("x2", this.x_scale).attr("y1", this.y_buffer).attr("y2", this.plot_height).style("stroke", "#ccc");
- };
+ Manhattan_Plot.prototype.add_axis_labels = function() {
+ return this.svg.append("text").attr("transform", "rotate(-90)").attr("y", 0 - (this.plot_height / 2)).attr("x", this.x_buffer).attr("dy", "1em").style("text-anchor", "middle").text("LOD Score");
+ };
- Manhattan_Plot.prototype.fill_chr_areas = function() {
- var _this = this;
- return this.svg.selectAll("rect.chr_fill_area_1").data(_.zip(this.chr_lengths, this.cumulative_chr_lengths), function(d) {
- return d;
- }).enter().append("rect").attr("class", "chr_fill_area_1").attr("x", function(d, i) {
- if (i === 0) {
- return _this.x_scale(0);
- } else {
- return _this.x_scale(_this.cumulative_chr_lengths[i - 1]);
- }
- }).attr("y", this.y_buffer).attr("width", function(d) {
- return _this.x_scale(d[0]);
- }).attr("height", this.plot_height - this.y_buffer);
- };
+ Manhattan_Plot.prototype.add_chr_lines = function() {
+ var _this = this;
+ return this.svg.selectAll("line").data(this.cumulative_chr_lengths, function(d) {
+ return d;
+ }).enter().append("line").attr("x1", this.x_scale).attr("x2", this.x_scale).attr("y1", this.y_buffer).attr("y2", this.plot_height).style("stroke", "#ccc");
+ };
+
+ Manhattan_Plot.prototype.fill_chr_areas = function() {
+ var _this = this;
+ console.log("cumu_chr_lengths:", this.cumulative_chr_lengths);
+ console.log("example:", this.x_scale(this.cumulative_chr_lengths[0]));
+ return this.svg.selectAll("rect.chr_fill_area").data(_.zip(this.chr_lengths, this.cumulative_chr_lengths), function(d) {
+ return d;
+ }).enter().append("rect").attr("x", function(d) {
+ if (i === 0) {
+ return _this.x_scale(0);
+ } else {
+ return _this.x_scale(d[1]);
+ }
+ }).attr("y", this.y_buffer).attr("width", function(d) {
+ return _this.x_scale(d[0]);
+ }).attr("height", this.plot_height - this.y_buffer);
+ };
- Manhattan_Plot.prototype.add_chr_labels = function() {
- var chr_info, chr_names, key,
- _this = this;
- chr_names = [];
- for (key in this.chromosomes) {
- chr_names.push(key);
+ Manhattan_Plot.prototype.fill_chr_areas2 = function() {
+ var _this = this;
+ console.log("cumu_chr_lengths:", this.cumulative_chr_lengths);
+ console.log("example:", this.x_scale(this.cumulative_chr_lengths[0]));
+ return this.svg.selectAll("rect.chr_fill_area").data(_.zip(this.chr_lengths, this.cumulative_chr_lengths), function(d) {
+ return d;
+ }).enter().append("rect").attr("x", function(d) {
+ if (i === 0) {
+ return _this.x_scale(0);
+ } else {
+ return _this.x_scale(d[1]);
}
- chr_info = _.zip(chr_names, this.chr_lengths, this.cumulative_chr_lengths);
- return this.svg.selectAll("text").data(chr_info, function(d) {
- return d;
- }).enter().append("text").text(function(d) {
+ }).attr("y", this.y_buffer).attr("width", function(d) {
+ return _this.x_scale(d[0]);
+ }).attr("height", this.plot_height - this.y_buffer).attr("fill", function(d, i) {
+ return "whitesmoke";
+ });
+ };
+
+ Manhattan_Plot.prototype.add_chr_labels = function() {
+ var chr_info, chr_names, key,
+ _this = this;
+ chr_names = [];
+ for (key in this.chromosomes) {
+ chr_names.push(key);
+ }
+ chr_info = _.zip(chr_names, this.chr_lengths, this.cumulative_chr_lengths);
+ return this.svg.selectAll("text").data(chr_info, function(d) {
+ return d;
+ }).enter().append("text").attr("class", "chr_label").text(function(d) {
+ if (d[0] === "23") {
+ return "X";
+ } else if (d[0] === "24") {
+ return "X/Y";
+ } else {
return d[0];
- }).attr("x", function(d) {
- return _this.x_scale(d[2] - d[1] / 2);
- }).attr("y", this.plot_height * 0.1).attr("dx", "0em").attr("text-anchor", "middle").attr("font-family", "sans-serif").attr("font-size", "18px").attr("fill", "grey");
- };
+ }
+ }).attr("x", function(d) {
+ return _this.x_scale(d[2] - d[1] / 2);
+ }).attr("y", this.plot_height * 0.1).attr("dx", "0em").attr("text-anchor", "middle").attr("font-family", "sans-serif").attr("font-size", "18px").attr("fill", "black").on("click", function(d) {
+ var this_chr;
+ this_chr = d;
+ return _this.redraw_plot(d);
+ });
+ };
+
+ Manhattan_Plot.prototype.add_plot_points = function() {
+ var _this = this;
+ return this.plot_point = this.svg.selectAll("circle").data(this.plot_coordinates).enter().append("circle").attr("cx", function(d) {
+ return _this.x_scale(d[0]);
+ }).attr("cy", function(d) {
+ return _this.y_scale(d[1]);
+ }).attr("r", 2).attr("id", function(d) {
+ return "point_" + String(d[2]);
+ }).classed("circle", true).on("mouseover", function(d) {
+ var this_id;
+ console.log("d3.event is:", d3.event);
+ console.log("d is:", d);
+ this_id = "point_" + String(d[2]);
+ return d3.select("#" + this_id).classed("d3_highlight", true).attr("r", 5).attr("fill", "yellow").call(_this.show_marker_in_table(d));
+ }).on("mouseout", function(d) {
+ var this_id;
+ this_id = "point_" + String(d[2]);
+ return d3.select("#" + this_id).classed("d3_highlight", false).attr("r", 2).attr("fill", "black");
+ });
+ };
+
+ Manhattan_Plot.prototype.redraw_plot = function(chr_ob) {
+ console.log("chr_name is:", chr_ob[0]);
+ console.log("chr_length is:", chr_ob[1]);
+ $('#manhattan_plot').remove();
+ $('#manhattan_plot_container').append('<div id="manhattan_plot"></div>');
+ return root.chr_plot = new Chr_Manhattan_Plot(600, 1200, chr_ob);
+ };
+
+ Manhattan_Plot.prototype.create_zoom_pane = function() {
+ var zoom;
+ zoom = d3.behavior.zoom().on("zoom", draw);
+ return this.svg.append("rect").attr("class", "pane").attr("width", this.plot_width).attr("height", this.plot_height).call(zoom);
+ };
+
+ Manhattan_Plot.prototype.draw = function() {
+ this.svg.select("g.x_axis").call(this.xAxis);
+ this.svg.select("g.y_axis").call(this.yAxis);
+ this.svg.select("path.area").attr("d", area);
+ return this.svg.select("path.line").attr("d", line);
+ };
- Manhattan_Plot.prototype.add_plot_points = function() {
- var _this = this;
- return this.svg.selectAll("circle").data(this.plot_coordinates).enter().append("circle").attr("cx", function(d) {
- return parseFloat(_this.x_buffer) + ((parseFloat(_this.plot_width) - parseFloat(_this.x_buffer)) * d[0] / parseFloat(_this.x_max));
- }).attr("cy", function(d) {
- return _this.plot_height - ((_this.plot_height - _this.y_buffer) * d[1] / _this.y_max);
- }).attr("r", 2).attr("id", function(d) {
- return "point_" + String(d[2]);
- }).classed("circle", true).on("mouseover", function(d) {
- var this_id;
- console.log("d3.event is:", d3.event);
- console.log("d is:", d);
- this_id = "point_" + String(d[2]);
- return d3.select("#" + this_id).classed("d3_highlight", true).attr("r", 5).attr("fill", "yellow").call(_this.show_marker_in_table(d));
- }).on("mouseout", function(d) {
- var this_id;
- this_id = "point_" + String(d[2]);
- return d3.select("#" + this_id).classed("d3_highlight", false).attr("r", 2).attr("fill", "black").call(_this.show_marker_in_table());
- });
- };
+ return Manhattan_Plot;
- return Manhattan_Plot;
+ })();
- })();
- console.time('Create manhattan plot');
- new Manhattan_Plot(600, 1200);
- return console.timeEnd('Create manhattan plot');
- });
+ root.Manhattan_Plot = new Manhattan_Plot(600, 1200);
}).call(this);
diff --git a/wqflask/wqflask/static/new/javascript/show_trait.coffee b/wqflask/wqflask/static/new/javascript/show_trait.coffee
index 1df033d6..84e465e8 100644
--- a/wqflask/wqflask/static/new/javascript/show_trait.coffee
+++ b/wqflask/wqflask/static/new/javascript/show_trait.coffee
@@ -64,8 +64,10 @@ $ ->
sample_lists = js_data.sample_lists
sample_group_types = js_data.sample_group_types
- $("#update_bar_chart.btn-group").button()
+ #if $("#update_bar_chart").length
+ # $("#update_bar_chart.btn-group").button()
root.bar_chart = new Bar_Chart(sample_lists[0])
+ root.histogram = new Histogram(sample_lists[0])
new Box_Plot(sample_lists[0])
$('.bar_chart_samples_group').change ->
@@ -73,13 +75,12 @@ $ ->
$('#bar_chart_container').append('<div id="bar_chart"></div>')
group = $(this).val()
if group == "samples_primary"
- new Bar_Chart(sample_lists[0])
+ root.bar_chart = new Bar_Chart(sample_lists[0])
else if group == "samples_other"
- new Bar_Chart(sample_lists[1])
+ root.bar_chart = new Bar_Chart(sample_lists[1])
else if group == "samples_all"
all_samples = sample_lists[0].concat sample_lists[1]
- new Bar_Chart(all_samples)
- #$(".btn-group").button()
+ root.bar_chart = new Bar_Chart(all_samples)
$('.box_plot_samples_group').change ->
$('#box_plot').remove()
@@ -93,18 +94,18 @@ $ ->
all_samples = sample_lists[0].concat sample_lists[1]
new Box_Plot(all_samples)
-
+
hide_tabs = (start) ->
for x in [start..10]
$("#stats_tabs" + x).hide()
+
# Changes stats table between all, bxd only and non-bxd, etc.
stats_mdp_change = ->
selected = $(this).val()
hide_tabs(0)
$("#stats_tabs" + selected).show()
- #$(".stats_mdp").change(stats_mdp_change)
change_stats_value = (sample_sets, category, value_type, decimal_places)->
id = "#" + process_id(category, value_type)
@@ -124,18 +125,16 @@ $ ->
console.log("*-* the_value:", the_value)
console.log("*-* current_value:", current_value)
if the_value != current_value
+ console.log("object:", $(id).html(the_value))
$(id).html(the_value).effect("highlight")
# We go ahead and always change the title value if we have it
if title_value
$(id).attr('title', title_value)
+
update_stat_values = (sample_sets)->
for category in ['samples_primary', 'samples_other', 'samples_all']
- #change_stats_value(sample_sets, category, "n_of_samples", 0)
-
- #for stat in ["mean", "median", "std_dev", "std_error", "min", "max"]
- #for stat in (row.vn for row in Stat_Table_Rows)
for row in Stat_Table_Rows
console.log("Calling change_stats_value")
change_stats_value(sample_sets, category, row.vn, row.digits)
diff --git a/wqflask/wqflask/static/new/javascript/show_trait.js b/wqflask/wqflask/static/new/javascript/show_trait.js
index 90fa8228..d4e01e6d 100644
--- a/wqflask/wqflask/static/new/javascript/show_trait.js
+++ b/wqflask/wqflask/static/new/javascript/show_trait.js
@@ -61,8 +61,8 @@
var block_by_attribute_value, block_by_index, block_outliers, change_stats_value, create_value_dropdown, edit_data_change, export_sample_table_data, get_sample_table_data, hide_no_value, hide_tabs, make_table, on_corr_method_change, populate_sample_attributes_values_dropdown, process_id, reset_samples_table, sample_group_types, sample_lists, show_hide_outliers, stats_mdp_change, update_stat_values;
sample_lists = js_data.sample_lists;
sample_group_types = js_data.sample_group_types;
- $("#update_bar_chart.btn-group").button();
root.bar_chart = new Bar_Chart(sample_lists[0]);
+ root.histogram = new Histogram(sample_lists[0]);
new Box_Plot(sample_lists[0]);
$('.bar_chart_samples_group').change(function() {
var all_samples, group;
@@ -70,12 +70,12 @@
$('#bar_chart_container').append('<div id="bar_chart"></div>');
group = $(this).val();
if (group === "samples_primary") {
- return new Bar_Chart(sample_lists[0]);
+ return root.bar_chart = new Bar_Chart(sample_lists[0]);
} else if (group === "samples_other") {
- return new Bar_Chart(sample_lists[1]);
+ return root.bar_chart = new Bar_Chart(sample_lists[1]);
} else if (group === "samples_all") {
all_samples = sample_lists[0].concat(sample_lists[1]);
- return new Bar_Chart(all_samples);
+ return root.bar_chart = new Bar_Chart(all_samples);
}
});
$('.box_plot_samples_group').change(function() {
@@ -123,6 +123,7 @@
console.log("*-* the_value:", the_value);
console.log("*-* current_value:", current_value);
if (the_value !== current_value) {
+ console.log("object:", $(id).html(the_value));
$(id).html(the_value).effect("highlight");
}
if (title_value) {
diff --git a/wqflask/wqflask/static/new/packages/DataTables/js/dataTables.naturalSort.js b/wqflask/wqflask/static/new/packages/DataTables/js/dataTables.naturalSort.js
new file mode 100644
index 00000000..c9e26682
--- /dev/null
+++ b/wqflask/wqflask/static/new/packages/DataTables/js/dataTables.naturalSort.js
@@ -0,0 +1,56 @@
+(function() {
+
+/*
+ * Natural Sort algorithm for Javascript - Version 0.7 - Released under MIT license
+ * Author: Jim Palmer (based on chunking idea from Dave Koelle)
+ * Contributors: Mike Grier (mgrier.com), Clint Priest, Kyle Adams, guillermo
+ * See: http://js-naturalsort.googlecode.com/svn/trunk/naturalSort.js
+ */
+function naturalSort (a, b) {
+ var re = /(^-?[0-9]+(\.?[0-9]*)[df]?e?[0-9]?$|^0x[0-9a-f]+$|[0-9]+)/gi,
+ sre = /(^[ ]*|[ ]*$)/g,
+ dre = /(^([\w ]+,?[\w ]+)?[\w ]+,?[\w ]+\d+:\d+(:\d+)?[\w ]?|^\d{1,4}[\/\-]\d{1,4}[\/\-]\d{1,4}|^\w+, \w+ \d+, \d{4})/,
+ hre = /^0x[0-9a-f]+$/i,
+ ore = /^0/,
+ // convert all to strings and trim()
+ x = a.toString().replace(sre, '') || '',
+ y = b.toString().replace(sre, '') || '',
+ // chunk/tokenize
+ xN = x.replace(re, '\0$1\0').replace(/\0$/,'').replace(/^\0/,'').split('\0'),
+ yN = y.replace(re, '\0$1\0').replace(/\0$/,'').replace(/^\0/,'').split('\0'),
+ // numeric, hex or date detection
+ xD = parseInt(x.match(hre)) || (xN.length != 1 && x.match(dre) && Date.parse(x)),
+ yD = parseInt(y.match(hre)) || xD && y.match(dre) && Date.parse(y) || null;
+ // first try and sort Hex codes or Dates
+ if (yD)
+ if ( xD < yD ) return -1;
+ else if ( xD > yD ) return 1;
+ // natural sorting through split numeric strings and default strings
+ for(var cLoc=0, numS=Math.max(xN.length, yN.length); cLoc < numS; cLoc++) {
+ // find floats not starting with '0', string or 0 if not defined (Clint Priest)
+ var oFxNcL = !(xN[cLoc] || '').match(ore) && parseFloat(xN[cLoc]) || xN[cLoc] || 0;
+ var oFyNcL = !(yN[cLoc] || '').match(ore) && parseFloat(yN[cLoc]) || yN[cLoc] || 0;
+ // handle numeric vs string comparison - number < string - (Kyle Adams)
+ if (isNaN(oFxNcL) !== isNaN(oFyNcL)) return (isNaN(oFxNcL)) ? 1 : -1;
+ // rely on string comparison if different types - i.e. '02' < 2 != '02' < '2'
+ else if (typeof oFxNcL !== typeof oFyNcL) {
+ oFxNcL += '';
+ oFyNcL += '';
+ }
+ if (oFxNcL < oFyNcL) return -1;
+ if (oFxNcL > oFyNcL) return 1;
+ }
+ return 0;
+}
+
+jQuery.extend( jQuery.fn.dataTableExt.oSort, {
+ "natural-asc": function ( a, b ) {
+ return naturalSort(a,b);
+ },
+
+ "natural-desc": function ( a, b ) {
+ return naturalSort(a,b) * -1;
+ }
+} );
+
+}()); \ No newline at end of file
diff --git a/wqflask/wqflask/templates/index_page.html b/wqflask/wqflask/templates/index_page.html
index d177a7bd..a7d7b513 100644
--- a/wqflask/wqflask/templates/index_page.html
+++ b/wqflask/wqflask/templates/index_page.html
@@ -17,7 +17,7 @@
<div class="row">
<div class="span3 bs-docs-sidebar">
<ul class="nav nav-list bs-docs-sidenav">
- <li><a href="#quick-search"><i class="icon-chevron-right"></i> Quick Search</a></li>
+<!-- <li><a href="#quick-search"><i class="icon-chevron-right"></i> Quick Search</a></li>-->
<li><a href="#search"><i class="icon-chevron-right"></i> Search</a></li>
<li><a href="#getting-started"><i class="icon-chevron-right"></i> Getting started</a></li>
<li><a href="#advanced"><i class="icon-chevron-right"></i> Advanced commands</a></li>
@@ -27,7 +27,7 @@
</div>
<div class="span9">
- <section id="quick-search">
+<!-- <section id="quick-search">
<div class="page-header">
<h1>Quick search</h1>
</div>
@@ -52,7 +52,7 @@
</div>
</fieldset>
</form>
- </section>
+ </section>-->
<section id="search">
<div class="page-header">
<h1>Select and search</h1>
diff --git a/wqflask/wqflask/templates/interval_mapping.html b/wqflask/wqflask/templates/interval_mapping.html
index e4e08388..e4b93bf4 100644
--- a/wqflask/wqflask/templates/interval_mapping.html
+++ b/wqflask/wqflask/templates/interval_mapping.html
@@ -77,7 +77,6 @@
<script language="javascript" type="text/javascript" src="/static/packages/TableTools/media/js/TableTools.min.js"></script>
<script language="javascript" type="text/javascript" src="/static/packages/underscore/underscore-min.js"></script>
-
<script type="text/javascript" charset="utf-8">
$(document).ready( function () {
console.time("Creating table");
diff --git a/wqflask/wqflask/templates/marker_regression.html b/wqflask/wqflask/templates/marker_regression.html
index 64d2e9b7..05fb9845 100644
--- a/wqflask/wqflask/templates/marker_regression.html
+++ b/wqflask/wqflask/templates/marker_regression.html
@@ -18,14 +18,17 @@
Manhattan Plot
</h2>
</div>
- <div id="manhattan_plots" class="manhattan_plots">
-
+ <div id="manhattan_plot_container" class="manhattan_plot_container">
+ <div id="manhattan_plot" class="manhattan_plots">
+
+ </div>
</div>
<div>
<h2>
Genome Association Results
</h2>
</div>
+
<table cellpadding="0" cellspacing="0" border="0" id="qtl_results" class="table table-hover table-striped table-bordered">
<thead>
<tr>
@@ -38,17 +41,18 @@
</thead>
<tbody>
{% for marker in qtl_results %}
- <tr>
- <td>{{loop.index}}</td>
- <td>{{marker.lod_score}}</td>
- <td>{{marker.chr}}</td>
- <td>{{marker.Mb}}</td>
- <td>{{marker.name}}</td>
- </tr>
+ {% if marker.lod_score > lod_cutoff %}
+ <tr>
+ <td>{{loop.index}}</td>
+ <td>{{marker.lod_score}}</td>
+ <td>{{marker.chr}}</td>
+ <td>{{marker.Mb}}</td>
+ <td>{{marker.name}}</td>
+ </tr>
+ {% endif %}
{% endfor %}
</tbody>
</table>
-
</div>
<!-- End of body -->
@@ -61,15 +65,16 @@
</script>
<!--[if lt IE 9]>
- <script language="javascript" type="text/javascript" src="/static/packages/jqplot/excanvas.js"></script>
+<!-- <script language="javascript" type="text/javascript" src="/static/packages/jqplot/excanvas.js"></script>-->
<![endif]-->
<script language="javascript" type="text/javascript" src="http://d3js.org/d3.v3.min.js"></script>
- <script language="javascript" type="text/javascript" src="/static/new/javascript/marker_regression.js"></script>
<script language="javascript" type="text/javascript" src="/static/new/packages/DataTables/js/jquery.js"></script>
<script language="javascript" type="text/javascript" src="/static/new/packages/DataTables/js/jquery.dataTables.min.js"></script>
<script language="javascript" type="text/javascript" src="/static/packages/DT_bootstrap/DT_bootstrap.js"></script>
<script language="javascript" type="text/javascript" src="/static/packages/TableTools/media/js/TableTools.min.js"></script>
<script language="javascript" type="text/javascript" src="/static/packages/underscore/underscore-min.js"></script>
+ <script language="javascript" type="text/javascript" src="/static/new/javascript/marker_regression.js"></script>
+ <script language="javascript" type="text/javascript" src="/static/new/javascript/chr_manhattan_plot.js"></script>
<script type="text/javascript" charset="utf-8">
diff --git a/wqflask/wqflask/templates/show_trait.html b/wqflask/wqflask/templates/show_trait.html
index 86891bb0..e15d043b 100644
--- a/wqflask/wqflask/templates/show_trait.html
+++ b/wqflask/wqflask/templates/show_trait.html
@@ -58,9 +58,49 @@
<script type="text/javascript" src="/static/new/javascript/box.js"></script>
<script type="text/javascript" src="/static/new/javascript/get_traits_from_collection.js"></script>
<script type="text/javascript" src="/static/new/javascript/bar_chart.js"></script>
+ <script type="text/javascript" src="/static/new/javascript/histogram.js"></script>
<script type="text/javascript" src="/static/new/javascript/box_plot.js"></script>
<script type="text/javascript" src="/static/new/javascript/show_trait_mapping_tools.js"></script>
<script type="text/javascript" src="/static/new/javascript/show_trait.js"></script>
<script type="text/javascript" src="/static/new/javascript/validation.js"></script>
+
+ <script language="javascript" type="text/javascript" src="/static/new/packages/DataTables/js/jquery.dataTables.min.js"></script>
+ <script language="javascript" type="text/javascript" src="/static/new/packages/DataTables/js/dataTables.naturalSort.js"></script>
+ <script language="javascript" type="text/javascript" src="/static/packages/DT_bootstrap/DT_bootstrap.js"></script>
+ <script language="javascript" type="text/javascript" src="/static/packages/TableTools/media/js/TableTools.min.js"></script>
+
+ <script type="text/javascript" charset="utf-8">
+ $(document).ready( function () {
+ console.time("Creating table");
+ $('#samples_primary, #samples_other').dataTable( {
+ //"sDom": "<<'span3'l><'span3'T><'span4'f>'row-fluid'r>t<'row-fluid'<'span6'i><'span6'p>>",
+ "aoColumns": [
+ { "sType": "natural" },
+ null,
+ null,
+ { "bSortable": false },
+ null
+ ],
+ "sDom": "ftr",
+ "oTableTools": {
+ "aButtons": [
+ "copy",
+ "print",
+ {
+ "sExtends": "collection",
+ "sButtonText": 'Save <span class="caret" />',
+ "aButtons": [ "csv", "xls", "pdf" ]
+ }
+ ],
+ "sSwfPath": "/static/packages/TableTools/media/swf/copy_csv_xls_pdf.swf"
+ },
+ "bPaginate": false,
+ "bLengthChange": true,
+ "bDeferRender": true,
+ "bSortClasses": false
+ } );
+ console.timeEnd("Creating table");
+ });
+ </script>
{% endblock %}
diff --git a/wqflask/wqflask/templates/show_trait_edit_data.html b/wqflask/wqflask/templates/show_trait_edit_data.html
index 84c606b9..e7df3b13 100644
--- a/wqflask/wqflask/templates/show_trait_edit_data.html
+++ b/wqflask/wqflask/templates/show_trait_edit_data.html
@@ -82,75 +82,73 @@
<div>
<h3>{{ sample_type.header }}</h3>
- <table class="table table-hover table-striped" {# Todo: Enable sorting on table #}
+ <table cellpadding="0" cellspacing="0" border="0" class="table table-hover table-striped table-bordered"
id="samples_{{ sample_type.sample_group_type }}">
- <tr>
- <th>Index</th>
-
- <th>Sample</th>
-
- <th>Value</th>
- {% if sample_type.se_exists() %}
- <th>&nbsp;</th>
-
- <th>SE</th>
- {% endif %}
-
- {% for attribute in sample_type.attributes|sort() %}
- <th>
- {{ sample_type.attributes[attribute].name }}
- </th>
+ <thead>
+ <tr>
+ <td>Index</td>
+ <td>Sample</td>
+ <td>Value</td>
+ {% if sample_type.se_exists() %}
+ <td>&nbsp;</td>
+ <td>SE</td>
+ {% endif %}
+ {% for attribute in sample_type.attributes|sort() %}
+ <td>
+ {{ sample_type.attributes[attribute].name }}
+ </td>
+ {% endfor %}
+ </tr>
+ </thead>
+ <tbody>
+ {% for sample in sample_type.sample_list %}
+ <tr class="{{ sample.class_outlier }} value_se" id="{{ sample.this_id }}">
+ <td class="column_name-Index">
+ {{ loop.index }}
+ <input type="checkbox" name="selectCheck"
+ class="checkbox edit_sample_checkbox"
+ value="{{ sample.name }}" checked="checked">
+ </td>
+
+ <td class="column_name-Sample">
+ <span class="edit_sample_sample_name">
+ {{ sample.name }}
+ </span>
+ </td>
+
+ {# Todo: Add IDs #}
+ <td class="column_name-Value">
+ <input type="text" data-value="{{ sample.display_value }}" name="{{ 'value:' + sample.name }}"
+ class="trait_value_input edit_sample_value"
+ value="{{ sample.display_value }}"
+ size=8 maxlength=8
+ >
+ </td>
+
+ {% if sample_type.se_exists() %}
+ <td>
+ ±
+ </td>
+
+ {# Todo: Add IDs #}
+ <td class="column_name-SE">
+ <input type="text" data-value="{{ sample.display_variance }}" name="{{ 'variance:' + sample.name}}"
+ class="trait_value_input edit_sample_se"
+ value="{{ sample.display_variance }}"
+ size=8 maxlength=8
+ >
+ </td>
+ {% endif %}
+
+ {# Loop through each attribute type and input value #}
+ {% for attribute in sample_type.attributes|sort() %}
+ <td class="std_cell column_name-{{ sample_type.attributes[attribute].name.replace(' ', '_') }}">
+ {{ sample.extra_attributes[sample_type.attributes[attribute].name] }}
+ </td>
+ {% endfor %}
+ </tr>
{% endfor %}
- </tr>
-
- {% for sample in sample_type.sample_list %}
- <tr class="{{ sample.class_outlier }} value_se" id="{{ sample.this_id }}">
- <td class="column_name-Index">
- {{ loop.index }}
- <input type="checkbox" name="selectCheck"
- class="checkbox edit_sample_checkbox"
- value="{{ sample.name }}" checked="checked">
- </td>
-
- <td class="column_name-Sample">
- <span class="edit_sample_sample_name">
- {{ sample.name }}
- </span>
- </td>
-
- {# Todo: Add IDs #}
- <td class="column_name-Value">
- <input type="text" data-value="{{ sample.display_value }}" name="{{ 'value:' + sample.name }}"
- class="trait_value_input edit_sample_value"
- value="{{ sample.display_value }}"
- size=8 maxlength=8
- >
- </td>
-
- {% if sample_type.se_exists() %}
- <td>
- ±
- </td>
-
- {# Todo: Add IDs #}
- <td class="column_name-SE">
- <input type="text" data-value="{{ sample.display_variance }}" name="{{ 'variance:' + sample.name}}"
- class="trait_value_input edit_sample_se"
- value="{{ sample.display_variance }}"
- size=8 maxlength=8
- >
- </td>
- {% endif %}
-
- {# Loop through each attribute type and input value #}
- {% for attribute in sample_type.attributes|sort() %}
- <td class="std_cell column_name-{{ sample_type.attributes[attribute].name.replace(' ', '_') }}">
- {{ sample.extra_attributes[sample_type.attributes[attribute].name] }}
- </td>
- {% endfor %}
- </tr>
- {% endfor %}
-
+ </tbody>
</table>
</div>
{% endfor %}
diff --git a/wqflask/wqflask/templates/show_trait_mapping_tools.html b/wqflask/wqflask/templates/show_trait_mapping_tools.html
index 58ee8982..cfa49456 100644
--- a/wqflask/wqflask/templates/show_trait_mapping_tools.html
+++ b/wqflask/wqflask/templates/show_trait_mapping_tools.html
@@ -133,7 +133,7 @@
<div class="controls">
<input name="num_perm" value="2000" type="text" />
</div>
- </div> -->
+ </div> -->
<div class="control-group">
<div class="controls">
diff --git a/wqflask/wqflask/templates/show_trait_statistics_new.html b/wqflask/wqflask/templates/show_trait_statistics_new.html
index 6d6b1d24..28f7e0c7 100644
--- a/wqflask/wqflask/templates/show_trait_statistics_new.html
+++ b/wqflask/wqflask/templates/show_trait_statistics_new.html
@@ -8,6 +8,9 @@
<a href="#bar_chart_tab" data-toggle="tab">Bar Chart</a>
</li>
<li>
+ <a href="#histogram_tab" data-toggle="tab">Histogram</a>
+ </li>
+ <li>
<a href="#box_plot_tab" data-toggle="tab">Box Plot</a>
</li>
</ul>
@@ -51,7 +54,20 @@
<div id="bar_chart"></div>
</div>
</div>
- <div class="tab-pane active" id="box_plot_tab">
+ <div class="tab-pane" id="histogram_tab">
+ {% if sample_groups|length > 1 %}
+ <select class="histogram_samples_group">
+ {% for group, pretty_group in sample_group_types.items() %}
+ <option value="{{ group }}">{{ pretty_group }}</option>
+ {% endfor %}
+ </select>
+ <br><br>
+ {% endif %}
+ <div id="histogram_container">
+ <div id="histogram"></div>
+ </div>
+ </div>
+ <div class="tab-pane" id="box_plot_tab">
{% if sample_groups|length > 1 %}
<select class="box_plot_samples_group">
{% for group, pretty_group in sample_group_types.items() %}
diff --git a/wqflask/wqflask/views.py b/wqflask/wqflask/views.py
index 828199c5..89820145 100644
--- a/wqflask/wqflask/views.py
+++ b/wqflask/wqflask/views.py
@@ -243,7 +243,12 @@ def marker_regression_page():
print(" ---**--- {}: {}".format(type(template_vars.__dict__[item]), item))
#causeerror
- Redis.set(key, pickle.dumps(result, pickle.HIGHEST_PROTOCOL))
+
+ #qtl_length = len(result['js_data']['qtl_results'])
+ #print("qtl_length:", qtl_length)
+ pickled_result = pickle.dumps(result, pickle.HIGHEST_PROTOCOL)
+ print("pickled result length:", len(pickled_result))
+ Redis.set(key, pickled_result)
Redis.expire(key, 60*60)
with Bench("Rendering template"):