diff options
Diffstat (limited to 'wqflask')
-rw-r--r-- | wqflask/wqflask/correlation/show_corr_results.py | 428 |
1 files changed, 242 insertions, 186 deletions
diff --git a/wqflask/wqflask/correlation/show_corr_results.py b/wqflask/wqflask/correlation/show_corr_results.py index fb4dc4f4..a817a4a4 100644 --- a/wqflask/wqflask/correlation/show_corr_results.py +++ b/wqflask/wqflask/correlation/show_corr_results.py @@ -1,4 +1,4 @@ -## Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License @@ -58,6 +58,31 @@ TISSUE_METHODS = [METHOD_TISSUE_PEARSON, METHOD_TISSUE_RANK] TISSUE_MOUSE_DB = 1 +def compute_sample_r(start_vars,target_dataset, trait_data, target_samplelist, method="pearson"): + import requests + from wqflask.correlation.correlation_gn3_api import compute_correlation + + # cor_results = compute_correlation(start_vars) + + data = { + "target_dataset": target_dataset, + "target_samplelist": target_samplelist, + "trait_data": { + "trait_sample_data": trait_data, + "trait_id": "HC_Q" + } + } + requests_url = f"http://127.0.0.1:8080/api/correlation/sample_x/{method}" + + results = requests.post(requests_url, json=data) + + data = results.json() + + print(data) + + return data + + class CorrelationResults(object): def __init__(self, start_vars): # get trait list from db (database name) @@ -78,11 +103,12 @@ class CorrelationResults(object): with Bench("Doing correlations"): if start_vars['dataset'] == "Temp": - self.dataset = data_set.create_dataset(dataset_name = "Temp", dataset_type = "Temp", group_name = start_vars['group']) + self.dataset = data_set.create_dataset( + dataset_name="Temp", dataset_type="Temp", group_name=start_vars['group']) self.trait_id = start_vars['trait_id'] self.this_trait = create_trait(dataset=self.dataset, - name=self.trait_id, - cellid=None) + name=self.trait_id, + cellid=None) else: helper_functions.get_species_dataset_trait(self, start_vars) @@ -97,7 +123,7 @@ class CorrelationResults(object): if ('loc_chr' in start_vars and 'min_loc_mb' in start_vars and - 'max_loc_mb' in start_vars): + 'max_loc_mb' in start_vars): self.location_type = get_string(start_vars, 'location_type') self.location_chr = get_string(start_vars, 'loc_chr') @@ -109,8 +135,8 @@ class CorrelationResults(object): self.get_formatted_corr_type() self.return_number = int(start_vars['corr_return_results']) - #The two if statements below append samples to the sample list based upon whether the user - #rselected Primary Samples Only, Other Samples Only, or All Samples + # The two if statements below append samples to the sample list based upon whether the user + # rselected Primary Samples Only, Other Samples Only, or All Samples primary_samples = self.dataset.group.samplelist if self.dataset.group.parlist != None: @@ -118,23 +144,26 @@ class CorrelationResults(object): if self.dataset.group.f1list != None: primary_samples += self.dataset.group.f1list - #If either BXD/whatever Only or All Samples, append all of that group's samplelist + # If either BXD/whatever Only or All Samples, append all of that group's samplelist if corr_samples_group != 'samples_other': self.process_samples(start_vars, primary_samples) - #If either Non-BXD/whatever or All Samples, get all samples from this_trait.data and - #exclude the primary samples (because they would have been added in the previous - #if statement if the user selected All Samples) + # If either Non-BXD/whatever or All Samples, get all samples from this_trait.data and + # exclude the primary samples (because they would have been added in the previous + # if statement if the user selected All Samples) if corr_samples_group != 'samples_primary': if corr_samples_group == 'samples_other': primary_samples = [x for x in primary_samples if x not in ( - self.dataset.group.parlist + self.dataset.group.f1list)] - self.process_samples(start_vars, list(self.this_trait.data.keys()), primary_samples) + self.dataset.group.parlist + self.dataset.group.f1list)] + self.process_samples(start_vars, list( + self.this_trait.data.keys()), primary_samples) - self.target_dataset = data_set.create_dataset(start_vars['corr_dataset']) + self.target_dataset = data_set.create_dataset( + start_vars['corr_dataset']) self.target_dataset.get_trait_data(list(self.sample_data.keys())) - self.header_fields = get_header_fields(self.target_dataset.type, self.corr_method) + self.header_fields = get_header_fields( + self.target_dataset.type, self.corr_method) if self.target_dataset.type == "ProbeSet": self.filter_cols = [7, 6] @@ -153,7 +182,8 @@ class CorrelationResults(object): tissue_corr_data = self.do_tissue_correlation_for_all_traits() if tissue_corr_data != None: for trait in list(tissue_corr_data.keys())[:self.return_number]: - self.get_sample_r_and_p_values(trait, self.target_dataset.trait_data[trait]) + self.get_sample_r_and_p_values( + trait, self.target_dataset.trait_data[trait]) else: for trait, values in list(self.target_dataset.trait_data.items()): self.get_sample_r_and_p_values(trait, values) @@ -163,80 +193,85 @@ class CorrelationResults(object): lit_corr_data = self.do_lit_correlation_for_all_traits() for trait in list(lit_corr_data.keys())[:self.return_number]: - self.get_sample_r_and_p_values(trait, self.target_dataset.trait_data[trait]) + self.get_sample_r_and_p_values( + trait, self.target_dataset.trait_data[trait]) elif self.corr_type == "sample": - for trait, values in list(self.target_dataset.trait_data.items()): - self.get_sample_r_and_p_values(trait, values) - - self.correlation_data = collections.OrderedDict(sorted(list(self.correlation_data.items()), - key=lambda t: -abs(t[1][0]))) - - - #ZS: Convert min/max chromosome to an int for the location range option - range_chr_as_int = None - for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()): - if 'loc_chr' in start_vars: - if chr_info.name == self.location_chr: - range_chr_as_int = order_id - - for _trait_counter, trait in enumerate(list(self.correlation_data.keys())[:self.return_number]): - trait_object = create_trait(dataset=self.target_dataset, name=trait, get_qtl_info=True, get_sample_info=False) - if not trait_object: - continue - - chr_as_int = 0 - for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()): - if self.location_type == "highest_lod": - if chr_info.name == trait_object.locus_chr: - chr_as_int = order_id - else: - if chr_info.name == trait_object.chr: - chr_as_int = order_id - - if (float(self.correlation_data[trait][0]) >= self.p_range_lower and - float(self.correlation_data[trait][0]) <= self.p_range_upper): - - if (self.target_dataset.type == "ProbeSet" or self.target_dataset.type == "Publish") and bool(trait_object.mean): - if (self.min_expr != None) and (float(trait_object.mean) < self.min_expr): - continue - - if range_chr_as_int != None and (chr_as_int != range_chr_as_int): - continue - if self.location_type == "highest_lod": - if (self.min_location_mb != None) and (float(trait_object.locus_mb) < float(self.min_location_mb)): - continue - if (self.max_location_mb != None) and (float(trait_object.locus_mb) > float(self.max_location_mb)): - continue - else: - if (self.min_location_mb != None) and (float(trait_object.mb) < float(self.min_location_mb)): - continue - if (self.max_location_mb != None) and (float(trait_object.mb) > float(self.max_location_mb)): - continue - - (trait_object.sample_r, - trait_object.sample_p, - trait_object.num_overlap) = self.correlation_data[trait] - - # Set some sane defaults - trait_object.tissue_corr = 0 - trait_object.tissue_pvalue = 0 - trait_object.lit_corr = 0 - if self.corr_type == "tissue" and tissue_corr_data != None: - trait_object.tissue_corr = tissue_corr_data[trait][1] - trait_object.tissue_pvalue = tissue_corr_data[trait][2] - elif self.corr_type == "lit": - trait_object.lit_corr = lit_corr_data[trait][1] - - self.correlation_results.append(trait_object) - - if self.corr_type != "lit" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet": - self.do_lit_correlation_for_trait_list() - - if self.corr_type != "tissue" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet": - self.do_tissue_correlation_for_trait_list() - - self.json_results = generate_corr_json(self.correlation_results, self.this_trait, self.dataset, self.target_dataset) + + compute_sample_r(start_vars, + self.target_dataset.trait_data, self.sample_data, self.target_dataset.samplelist) + # for trait, values in list(self.target_dataset.trait_data.items()): + # self.get_sample_r_and_p_values(trait, values) + + # self.correlation_data = collections.OrderedDict(sorted(list(self.correlation_data.items()), + # key=lambda t: -abs(t[1][0]))) + + # # ZS: Convert min/max chromosome to an int for the location range option + # range_chr_as_int = None + # for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()): + # if 'loc_chr' in start_vars: + # if chr_info.name == self.location_chr: + # range_chr_as_int = order_id + + # for _trait_counter, trait in enumerate(list(self.correlation_data.keys())[:self.return_number]): + # trait_object = create_trait( + # dataset=self.target_dataset, name=trait, get_qtl_info=True, get_sample_info=False) + # if not trait_object: + # continue + + # chr_as_int = 0 + # for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()): + # if self.location_type == "highest_lod": + # if chr_info.name == trait_object.locus_chr: + # chr_as_int = order_id + # else: + # if chr_info.name == trait_object.chr: + # chr_as_int = order_id + + # if (float(self.correlation_data[trait][0]) >= self.p_range_lower and + # float(self.correlation_data[trait][0]) <= self.p_range_upper): + + # if (self.target_dataset.type == "ProbeSet" or self.target_dataset.type == "Publish") and bool(trait_object.mean): + # if (self.min_expr != None) and (float(trait_object.mean) < self.min_expr): + # continue + + # if range_chr_as_int != None and (chr_as_int != range_chr_as_int): + # continue + # if self.location_type == "highest_lod": + # if (self.min_location_mb != None) and (float(trait_object.locus_mb) < float(self.min_location_mb)): + # continue + # if (self.max_location_mb != None) and (float(trait_object.locus_mb) > float(self.max_location_mb)): + # continue + # else: + # if (self.min_location_mb != None) and (float(trait_object.mb) < float(self.min_location_mb)): + # continue + # if (self.max_location_mb != None) and (float(trait_object.mb) > float(self.max_location_mb)): + # continue + + # (trait_object.sample_r, + # trait_object.sample_p, + # trait_object.num_overlap) = self.correlation_data[trait] + + # # Set some sane defaults + # trait_object.tissue_corr = 0 + # trait_object.tissue_pvalue = 0 + # trait_object.lit_corr = 0 + # if self.corr_type == "tissue" and tissue_corr_data != None: + # trait_object.tissue_corr = tissue_corr_data[trait][1] + # trait_object.tissue_pvalue = tissue_corr_data[trait][2] + # elif self.corr_type == "lit": + # trait_object.lit_corr = lit_corr_data[trait][1] + + # self.correlation_results.append(trait_object) + + # if self.corr_type != "lit" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet": + # self.do_lit_correlation_for_trait_list() + + # if self.corr_type != "tissue" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet": + # self.do_tissue_correlation_for_trait_list() + + # self.json_results = generate_corr_json( + # self.correlation_results, self.this_trait, self.dataset, self.target_dataset) ############################################################################################################################################ @@ -259,39 +294,43 @@ class CorrelationResults(object): def do_tissue_correlation_for_trait_list(self, tissue_dataset_id=1): """Given a list of correlation results (self.correlation_results), gets the tissue correlation value for each""" - #Gets tissue expression values for the primary trait + # Gets tissue expression values for the primary trait primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values( - symbol_list = [self.this_trait.symbol]) + symbol_list=[self.this_trait.symbol]) if self.this_trait.symbol.lower() in primary_trait_tissue_vals_dict: - primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower()] - gene_symbol_list = [trait.symbol for trait in self.correlation_results if trait.symbol] + primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower( + )] + gene_symbol_list = [ + trait.symbol for trait in self.correlation_results if trait.symbol] - corr_result_tissue_vals_dict= correlation_functions.get_trait_symbol_and_tissue_values( - symbol_list=gene_symbol_list) + corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values( + symbol_list=gene_symbol_list) for trait in self.correlation_results: if trait.symbol and trait.symbol.lower() in corr_result_tissue_vals_dict: - this_trait_tissue_values = corr_result_tissue_vals_dict[trait.symbol.lower()] + this_trait_tissue_values = corr_result_tissue_vals_dict[trait.symbol.lower( + )] result = correlation_functions.cal_zero_order_corr_for_tiss(primary_trait_tissue_values, - this_trait_tissue_values, - self.corr_method) + this_trait_tissue_values, + self.corr_method) trait.tissue_corr = result[0] trait.tissue_pvalue = result[2] def do_tissue_correlation_for_all_traits(self, tissue_dataset_id=1): - #Gets tissue expression values for the primary trait + # Gets tissue expression values for the primary trait primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values( - symbol_list = [self.this_trait.symbol]) + symbol_list=[self.this_trait.symbol]) if self.this_trait.symbol.lower() in primary_trait_tissue_vals_dict: - primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower()] + primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower( + )] #print("trait_gene_symbols: ", pf(trait_gene_symbols.values())) - corr_result_tissue_vals_dict= correlation_functions.get_trait_symbol_and_tissue_values( - symbol_list=list(self.trait_symbol_dict.values())) + corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values( + symbol_list=list(self.trait_symbol_dict.values())) #print("corr_result_tissue_vals: ", pf(corr_result_tissue_vals_dict)) @@ -300,27 +339,30 @@ class CorrelationResults(object): tissue_corr_data = {} for trait, symbol in list(self.trait_symbol_dict.items()): if symbol and symbol.lower() in corr_result_tissue_vals_dict: - this_trait_tissue_values = corr_result_tissue_vals_dict[symbol.lower()] + this_trait_tissue_values = corr_result_tissue_vals_dict[symbol.lower( + )] result = correlation_functions.cal_zero_order_corr_for_tiss(primary_trait_tissue_values, - this_trait_tissue_values, - self.corr_method) + this_trait_tissue_values, + self.corr_method) tissue_corr_data[trait] = [symbol, result[0], result[2]] tissue_corr_data = collections.OrderedDict(sorted(list(tissue_corr_data.items()), - key=lambda t: -abs(t[1][1]))) + key=lambda t: -abs(t[1][1]))) return tissue_corr_data def do_lit_correlation_for_trait_list(self): - input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(self.dataset.group.species.lower(), self.this_trait.geneid) + input_trait_mouse_gene_id = self.convert_to_mouse_gene_id( + self.dataset.group.species.lower(), self.this_trait.geneid) for trait in self.correlation_results: if trait.geneid: - trait.mouse_gene_id = self.convert_to_mouse_gene_id(self.dataset.group.species.lower(), trait.geneid) + trait.mouse_gene_id = self.convert_to_mouse_gene_id( + self.dataset.group.species.lower(), trait.geneid) else: trait.mouse_gene_id = None @@ -348,13 +390,14 @@ class CorrelationResults(object): else: trait.lit_corr = 0 - def do_lit_correlation_for_all_traits(self): - input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(self.dataset.group.species.lower(), self.this_trait.geneid) + input_trait_mouse_gene_id = self.convert_to_mouse_gene_id( + self.dataset.group.species.lower(), self.this_trait.geneid) lit_corr_data = {} for trait, gene_id in list(self.trait_geneid_dict.items()): - mouse_gene_id = self.convert_to_mouse_gene_id(self.dataset.group.species.lower(), gene_id) + mouse_gene_id = self.convert_to_mouse_gene_id( + self.dataset.group.species.lower(), gene_id) if mouse_gene_id and str(mouse_gene_id).find(";") == -1: #print("gene_symbols:", input_trait_mouse_gene_id + " / " + mouse_gene_id) @@ -382,7 +425,7 @@ class CorrelationResults(object): lit_corr_data[trait] = [gene_id, 0] lit_corr_data = collections.OrderedDict(sorted(list(lit_corr_data.items()), - key=lambda t: -abs(t[1][1]))) + key=lambda t: -abs(t[1][1]))) return lit_corr_data @@ -422,6 +465,7 @@ class CorrelationResults(object): return mouse_gene_id + def get_sample_r_and_p_values(self, trait, target_samples): """Calculates the sample r (or rho) and p-value @@ -431,6 +475,9 @@ class CorrelationResults(object): """ + print("below here>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>") + print(self.target_dataset.trait_data) + self.this_trait_vals = [] target_vals = [] for index, sample in enumerate(self.target_dataset.samplelist): @@ -440,21 +487,26 @@ class CorrelationResults(object): self.this_trait_vals.append(sample_value) target_vals.append(target_sample_value) - self.this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values(self.this_trait_vals, target_vals) + self.this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values( + self.this_trait_vals, target_vals) if num_overlap > 5: - #ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/ + # ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/ if self.corr_method == 'bicor': - sample_r, sample_p = do_bicor(self.this_trait_vals, target_vals) + sample_r, sample_p = do_bicor( + self.this_trait_vals, target_vals) elif self.corr_method == 'pearson': - sample_r, sample_p = scipy.stats.pearsonr(self.this_trait_vals, target_vals) + sample_r, sample_p = scipy.stats.pearsonr( + self.this_trait_vals, target_vals) else: - sample_r, sample_p = scipy.stats.spearmanr(self.this_trait_vals, target_vals) + sample_r, sample_p = scipy.stats.spearmanr( + self.this_trait_vals, target_vals) if numpy.isnan(sample_r): pass else: - self.correlation_data[trait] = [sample_r, sample_p, num_overlap] + self.correlation_data[trait] = [ + sample_r, sample_p, num_overlap] def process_samples(self, start_vars, sample_names, excluded_samples=None): if not excluded_samples: @@ -475,16 +527,18 @@ def do_bicor(this_trait_vals, target_trait_vals): r_library("WGCNA") r_bicor = ro.r["bicorAndPvalue"] # Map the bicorAndPvalue function - r_options(stringsAsFactors = False) + r_options(stringsAsFactors=False) this_vals = ro.Vector(this_trait_vals) target_vals = ro.Vector(target_trait_vals) - the_r, the_p, _fisher_transform, _the_t, _n_obs = [numpy.asarray(x) for x in r_bicor(x = this_vals, y = target_vals)] + the_r, the_p, _fisher_transform, _the_t, _n_obs = [ + numpy.asarray(x) for x in r_bicor(x=this_vals, y=target_vals)] return the_r, the_p -def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_api = False): + +def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_api=False): results_list = [] for i, trait in enumerate(corr_results): if trait.view == False: @@ -493,7 +547,8 @@ def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_ap results_dict['index'] = i + 1 results_dict['trait_id'] = trait.name results_dict['dataset'] = trait.dataset.name - results_dict['hmac'] = hmac.data_hmac('{}:{}'.format(trait.name, trait.dataset.name)) + results_dict['hmac'] = hmac.data_hmac( + '{}:{}'.format(trait.name, trait.dataset.name)) if target_dataset.type == "ProbeSet": results_dict['symbol'] = trait.symbol results_dict['description'] = "N/A" @@ -544,7 +599,8 @@ def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_ap if bool(trait.authors): authors_list = trait.authors.split(',') if len(authors_list) > 6: - results_dict['authors_display'] = ", ".join(authors_list[:6]) + ", et al." + results_dict['authors_display'] = ", ".join( + authors_list[:6]) + ", et al." else: results_dict['authors_display'] = trait.authors if bool(trait.pubmed_id): @@ -574,85 +630,85 @@ def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_ap return json.dumps(results_list) + def get_header_fields(data_type, corr_method): if data_type == "ProbeSet": if corr_method == "spearman": header_fields = ['Index', - 'Record', - 'Symbol', - 'Description', - 'Location', - 'Mean', - 'Sample rho', - 'N', - 'Sample p(rho)', - 'Lit rho', - 'Tissue rho', - 'Tissue p(rho)', - 'Max LRS', - 'Max LRS Location', - 'Additive Effect'] + 'Record', + 'Symbol', + 'Description', + 'Location', + 'Mean', + 'Sample rho', + 'N', + 'Sample p(rho)', + 'Lit rho', + 'Tissue rho', + 'Tissue p(rho)', + 'Max LRS', + 'Max LRS Location', + 'Additive Effect'] else: header_fields = ['Index', - 'Record', - 'Symbol', - 'Description', - 'Location', - 'Mean', - 'Sample r', - 'N', - 'Sample p(r)', - 'Lit r', - 'Tissue r', - 'Tissue p(r)', - 'Max LRS', - 'Max LRS Location', - 'Additive Effect'] + 'Record', + 'Symbol', + 'Description', + 'Location', + 'Mean', + 'Sample r', + 'N', + 'Sample p(r)', + 'Lit r', + 'Tissue r', + 'Tissue p(r)', + 'Max LRS', + 'Max LRS Location', + 'Additive Effect'] elif data_type == "Publish": if corr_method == "spearman": header_fields = ['Index', - 'Record', - 'Abbreviation', - 'Description', - 'Mean', - 'Authors', - 'Year', - 'Sample rho', - 'N', - 'Sample p(rho)', - 'Max LRS', - 'Max LRS Location', - 'Additive Effect'] + 'Record', + 'Abbreviation', + 'Description', + 'Mean', + 'Authors', + 'Year', + 'Sample rho', + 'N', + 'Sample p(rho)', + 'Max LRS', + 'Max LRS Location', + 'Additive Effect'] else: header_fields = ['Index', - 'Record', - 'Abbreviation', - 'Description', - 'Mean', - 'Authors', - 'Year', - 'Sample r', - 'N', - 'Sample p(r)', - 'Max LRS', - 'Max LRS Location', - 'Additive Effect'] + 'Record', + 'Abbreviation', + 'Description', + 'Mean', + 'Authors', + 'Year', + 'Sample r', + 'N', + 'Sample p(r)', + 'Max LRS', + 'Max LRS Location', + 'Additive Effect'] else: if corr_method == "spearman": header_fields = ['Index', - 'ID', - 'Location', - 'Sample rho', - 'N', - 'Sample p(rho)'] + 'ID', + 'Location', + 'Sample rho', + 'N', + 'Sample p(rho)'] else: header_fields = ['Index', - 'ID', - 'Location', - 'Sample r', - 'N', - 'Sample p(r)'] + 'ID', + 'Location', + 'Sample r', + 'N', + 'Sample p(r)'] return header_fields - |