#!/bin/env python3 from nltk.tokenize import sent_tokenize import os import re from ratspub_keywords import * global function_d, brain_d, drug_d, addiction_d, brain_query_term, pubmed_path ## turn dictionary (synonyms) to regular expression def undic(dic): return "|".join(dic.values()) def findWholeWord(w): return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search def getSentences(query, gene): abstracts = os.popen("esearch -db pubmed -query " + query + " | efetch -format uid |fetch-pubmed -path "+ pubmed_path + " | xtract -pattern PubmedArticle -element MedlineCitation/PMID,ArticleTitle,AbstractText|sed \"s/-/ /g\"").read() out=str() for row in abstracts.split("\n"): tiab=row.split("\t") pmid = tiab.pop(0) tiab= " ".join(tiab) sentences = sent_tokenize(tiab) ## keep the sentence only if it contains the gene for sent in sentences: if findWholeWord(gene)(sent): sent=re.sub(r'\b(%s)\b' % gene, r'\1', sent, flags=re.I) out+=pmid+"\t"+sent+"\n" return(out) def gene_category(gene, cat_d, query, cat): #e.g. BDNF, addiction_d, undic(addiction_d) "addiction" q="\"(" + query.replace("|", " OR ") + ") AND " + gene + "\"" sents=getSentences(q, gene) out=str() for sent in sents.split("\n"): for key in cat_d: if findWholeWord(cat_d[key])(sent) : sent=sent.replace("","").replace("","") # remove other highlights sent=re.sub(r'\b(%s)\b' % cat_d[key], r'\1', sent, flags=re.I) # highlight keyword out+=gene+"\t"+ cat + "\t"+key+"\t"+sent+"\n" return(out) def generate_nodes(nodes_d, nodetype): # include all search terms even if there are no edges, just to show negative result json0 =str() for node in nodes_d: json0 += "{ data: { id: '" + node + "', nodecolor: '" + nodecolor[nodetype] + "', nodetype: '"+nodetype + "', url:'/shownode?nodetype=" + nodetype + "&node="+node+"' } },\n" return(json0) def generate_nodes_json(nodes_d, nodetype): # include all search terms even if there are no edges, just to show negative result nodes_json0 =str() for node in nodes_d: nodes_json0 += "{ \"id\": \"" + node + "\", \"nodecolor\": \"" + nodecolor[nodetype] + "\", \"nodetype\": \"" + nodetype + "\", \"url\":\"/shownode?nodetype=" + nodetype + "&node="+node+"\" },\n" return(nodes_json0) def generate_edges(data, filename): pmid_list=[] json0=str() edgeCnts={} for line in data.split("\n"): if len(line.strip())!=0: (source, cat, target, pmid, sent) = line.split("\t") edgeID=filename+"|"+source+"|"+target if (edgeID in edgeCnts) and (pmid+target not in pmid_list): edgeCnts[edgeID]+=1 pmid_list.append(pmid+target) elif (edgeID not in edgeCnts) and (pmid+target not in pmid_list): edgeCnts[edgeID]=1 pmid_list.append(pmid+target) for edgeID in edgeCnts: (filename, source,target)=edgeID.split("|") json0+="{ data: { id: '" + edgeID + "', source: '" + source + "', target: '" + target + "', sentCnt: " + str(edgeCnts[edgeID]) + ", url:'/sentences?edgeID=" + edgeID + "' } },\n" return(json0) def generate_edges_json(data, filename): pmid_list=[] edges_json0=str() edgeCnts={} for line in data.split("\n"): if len(line.strip())!=0: (source, cat, target, pmid, sent) = line.split("\t") edgeID=filename+"|"+source+"|"+target if (edgeID in edgeCnts) and (pmid+target not in pmid_list): edgeCnts[edgeID]+=1 pmid_list.append(pmid+target) elif (edgeID not in edgeCnts) and (pmid+target not in pmid_list): edgeCnts[edgeID]=1 pmid_list.append(pmid+target) for edgeID in edgeCnts: (filename, source,target)=edgeID.split("|") edges_json0+="{ \"id\": \"" + edgeID + "\", \"source\": \"" + source + "\", \"target\": \"" + target + "\", \"sentCnt\": \"" + str(edgeCnts[edgeID]) + "\", \"url\":\"/sentences?edgeID=" + edgeID + "\" },\n" return(edges_json0) def searchArchived(sets, query, filetype): if sets=='topGene': dataFile="topGene_addiction_sentences.tab" nodes= "{ data: { id: '" + query + "', nodecolor: '" + "#2471A3" + "', fontweight:700, url:'/progress?query="+query+"' } },\n" elif sets=='GWAS': dataFile="gwas_addiction.tab" nodes=str() with open(dataFile, "r") as sents: pmid_list=[] cat1_list=[] catCnt={} for sent in sents: (symb, cat0, cat1, pmid, sent)=sent.split("\t") if (symb.upper() == query.upper()) : if (cat1 in catCnt.keys()) and (pmid+cat1 not in pmid_list): pmid_list.append(pmid+cat1) catCnt[cat1]+=1 elif (cat1 not in catCnt.keys()): catCnt[cat1]=1 pmid_list.append(pmid+cat1) nodes= "{ data: { id: '" + query + "', nodecolor: '" + "#2471A3" + "', fontweight:700, url:'/progress?query="+query+"' } },\n" edges=str() gwas_json=str() for key in catCnt.keys(): if sets=='GWAS': nc=nodecolor["GWAS"] nodes += "{ data: { id: '" + key + "', nodecolor: '" + nc + "', url:'https://www.ebi.ac.uk/gwas/search?query="+key.replace("_GWAS","")+"' } },\n" elif key in drug_d.keys(): nc=nodecolor["drug"] nodes += "{ data: { id: '" + key + "', nodecolor: '" + nc + "', url:'/shownode?node="+key+"' } },\n" else: nc=nodecolor["addiction"] nodes += "{ data: { id: '" + key + "', nodecolor: '" + nc + "', url:'/shownode?node="+key+"' } },\n" edgeID=dataFile+"|"+query+"|"+key edges+="{ data: { id: '" + edgeID+ "', source: '" + query + "', target: '" + key + "', sentCnt: " + str(catCnt[key]) + ", url:'/sentences?edgeID=" + edgeID + "' } },\n" gwas_json+="{ \"id\": \"" + edgeID + "\", \"source\": \"" + query + "\", \"target\": \"" + key + "\", \"sentCnt\": \"" + str(catCnt[key]) + "\", \"url\":\"/sentences?edgeID=" + edgeID + "\" },\n" if(filetype == 'cys'): return(nodes+edges) else: return(gwas_json) # brain region has too many short acronyms to just use the undic function, so search PubMed using the following brain_query_term="cortex|accumbens|striatum|amygadala|hippocampus|tegmental|mesolimbic|infralimbic|prelimbic|habenula" function=undic(function_d) addiction=undic(addiction_d) drug=undic(drug_d) nodecolor={'function':"#A9CCE3", 'addiction': "#D7BDE2", 'drug': "#F9E79F", 'brain':"#A3E4D7", 'GWAS':"#AEB6BF", 'stress':"#EDBB99", 'psychiatric':"#F5B7B1"} #https://htmlcolorcodes.com/ third column down n0=generate_nodes(function_d, 'function') n1=generate_nodes(addiction_d, 'addiction') n2=generate_nodes(drug_d, 'drug') n3=generate_nodes(brain_d, 'brain') n4=generate_nodes(stress_d, 'stress') n5=generate_nodes(psychiatric_d, 'psychiatric') n6=generate_nodes(psychiatric_d, 'GWAS') nj0=generate_nodes_json(function_d, 'function') nj1=generate_nodes_json(addiction_d, 'addiction') nj2=generate_nodes_json(drug_d, 'drug') nj3=generate_nodes_json(brain_d, 'brain') nj4=generate_nodes_json(stress_d, 'stress') nj5=generate_nodes_json(psychiatric_d, 'psychiatric') nj6=generate_nodes_json(psychiatric_d, 'GWAS') pubmed_path="~/Dropbox/ChenLab/Hakan/RatsPub/PubMed/Archive" ''' host= os.popen('hostname').read().strip() if host=="x1": pubmed_path="/run/media/hao/PubMed/Archive/" elif host=="hchen3": pubmed_path="/media/hao/2d554499-6c5b-462d-85f3-5c49b25f4ac8/PubMed/Archive" elif host=="penguin2": pubmed_path="/export2/PubMed/Archive" '''