#!/bin/env python3
from nltk.tokenize import sent_tokenize
import os
import re
global function_d, brain_d, drug_d, addiction_d
## turn dictionary (synonyms) to regular expression
def undic(dic):
return "|".join(dic.values())
def findWholeWord(w):
return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search
def getSentences(query, gene):
abstracts = os.popen("esearch -db pubmed -query " + query + " | efetch -format uid |fetch-pubmed -path /run/media/hao/PubMed/Archive/ | xtract -pattern PubmedArticle -element MedlineCitation/PMID,ArticleTitle,AbstractText|sed \"s/-/ /g\"").read()
out=str()
for row in abstracts.split("\n"):
tiab=row.split("\t")
pmid = tiab.pop(0)
tiab= " ".join(tiab)
sentences = sent_tokenize(tiab)
## keep the sentence only if it contains the gene
for sent in sentences:
if findWholeWord(gene)(sent):
sent=re.sub(r'\b(%s)\b' % gene, r'\1', sent, flags=re.I)
out+=pmid+"\t"+sent+"\n"
return(out)
def gene_addiction(gene):
# search gene name & drug name in the context of addiction terms (i.e., exclude etoh affects cancer, or methods to extract cocaine)
q="\"(" + addiction.replace("|", " OR ") + ") AND (" + drug.replace("|", " OR ", ) + ") AND " + gene + "\""
sents=getSentences(q, gene)
out=str()
for sent in sents.split("\n"):
for drug0 in drug_d:
if findWholeWord(drug_d[drug0])(sent) :
sent=sent.replace("","").replace("","")
sent=re.sub(r'\b(%s)\b' % drug_d[drug0], r'\1', sent, flags=re.I)
out+=gene+"\t"+"drug\t" + drug0+"\t"+sent+"\n"
for add0 in addiction_d:
if findWholeWord(addiction_d[add0])(sent) :
sent=sent.replace("","").replace("","")
sent=re.sub(r'\b(%s)\b' % addiction_d[add0], r'\1', sent, flags=re.I)
out+=gene+"\t"+"addiction\t"+add0+"\t"+sent+"\n"
return(out)
def gene_anatomical(gene):
q="\"(" + brain.replace("|", " OR ") + ") AND " + gene + "\""
sents=getSentences(q,gene)
out=str()
for sent in sents.split("\n"):
for brain0 in brain_d:
if findWholeWord(brain_d[brain0])(sent) :
sent=sent.replace("","").replace("","")
sent=re.sub(r'\b(%s)\b' % brain_d[brain0], r'\1', sent, flags=re.I)
out+=gene+"\t"+"brain\t"+brain0+"\t"+sent+"\n"
return(out)
def gene_functional(gene):
q="\"(" + function.replace("|", " OR ") + ") AND " + gene + "\""
sents=getSentences(q,gene)
out=str()
for sent in sents.split("\n"):
for bio0 in function_d:
if findWholeWord(function_d[bio0])(sent) :
sent=sent.replace("","").replace("","")
sent=re.sub(r'\b(%s)\b' % function_d[bio0], r'\1', sent, flags=re.I)
out+=gene+"\t"+"function\t"+bio0+"\t"+sent+"\n"
return(out)
def generate_nodes(nodes_d, nodetype):
nodecolor={'function':"#A9CCE3", 'addiction': "#D7BDE2", 'drug': "#F9E79F", 'brain':"#A3E4D7"}
# include all search terms even if there are no edges, just to show negative result
json0 =str()
for node in nodes_d:
json0 += "{ data: { id: '" + node + "', nodecolor: '" + nodecolor[nodetype] + "', nodetype: '"+nodetype + "', url:'/shownode?nodetype=" + nodetype + "&node="+node+"' } },\n"
return(json0)
def generate_edges(data, filename):
json0=str()
edgeCnts={}
for line in data.split("\n"):
if len(line.strip())!=0:
(source, cat, target, pmid, sent) = line.split("\t")
edgeID=filename+"|"+source+"|"+target
if edgeID in edgeCnts:
edgeCnts[edgeID]+=1
else:
edgeCnts[edgeID]=1
for edgeID in edgeCnts:
(filename, source,target)=edgeID.split("|")
json0+="{ data: { id: '" + edgeID + "', source: '" + source + "', target: '" + target + "', sentCnt: " + str(edgeCnts[edgeID]) + ", url:'/sentences?edgeID=" + edgeID + "' } },\n"
return(json0)
addiction_d = {"reward":"reward|hedonic|incentive|intracranial self stimulation|ICSS|reinforcement|reinforcing|conditioned place preference|CPP|self administration|self administered|drug reinforced|operant|instrumental response",
"aversion":"aversion|aversive|CTA|withdrawal|conditioned taste aversion",
"relapse":"relapse|reinstatement|craving|drug seeking|seeking",
"sensitization":"sensitization",
"addiction":"addiction|dependence|addictive|drug abuse|punishment|compulsive|escalation",
"intoxication":"intoxication|binge"
}
addiction=undic(addiction_d)
drug_d = {"alcohol":"alcohol|alcoholism|alcoholic",
"nicotine":"smoking|nicotine|tobacco",
"cocaine":"cocaine",
"opioid":"opioid|opioids|fentanyl|oxycodone|oxycontin|heroin|morphine|methadone|buprenorphine",
"amphetamine":"methamphetamine|amphetamine|METH",
"cannabinoid":"endocannabinoid|cannabinoids|endocannabinoids|marijuana|cannabidiol|cannabinoid|tetrahydrocannabinol|thc|thc 9|Oleoylethanolamide|palmitoylethanolamide|acylethanolamides"
}
drug=undic(drug_d)
brain_d ={"cortex":"cortex|prefrontal|pfc|mPFC|vmpfc|corticostriatal|cortico limbic|corticolimbic|prl|prelimbic|infralimbic|orbitofrontal|cingulate|cerebral|insular|insula",
"striatum":"striatum|STR|striatal|caudate|putamen|basal ganglia|globus pallidus",
"accumbens":"accumbens|accumbal|shell|core|Nacc|NacSh|acbs|acbc",
"hippocampus":"hippocampus|hippocampal|hipp|hip|ca1|ca3|dentate gyrus|subiculum|vhipp|dhpc|vhpc",
"amygdala":"amygdala|cea|bla|amy",
"vta":"ventral tegmental|vta|pvta|mesolimbic|limbic|midbrain|mesoaccumbens"
}
# brain region has too many short acronyms to just use the undic function, so search PubMed using the following
brain="cortex|accumbens|striatum|amygadala|hippocampus|tegmental|mesolimbic|infralimbic|prelimbic"
function_d={"neuroplasticity":"neuroplasticity|plasticity|long term potentiation|LTP|long term depression|LTD|synaptic|epsp|epsc|neurite|neurogenesis|boutons|mIPSC|IPSC|IPSP",
"signalling":"signalling|signaling|phosphorylation|glycosylation",
# "regulation":"increased|decreased|regulated|inhibited|stimulated",
"transcription":"transcription|methylation|hypomethylation|hypermethylation|histone|ribosome",
"neurotransmission": "neurotransmission|neuropeptides|neuropeptide|glutamate|glutamatergic|GABA|GABAergic|dopamine|dopaminergic|DAergic|cholinergic|nicotinic|muscarinic|serotonergic|serotonin|5 ht|acetylcholine",
}
function=undic(function_d)
#https://htmlcolorcodes.com/
n0=generate_nodes(function_d, 'function')
n1=generate_nodes(addiction_d, 'addiction')
n2=generate_nodes(drug_d, 'drug')
n3=generate_nodes(brain_d, 'brain')
default_nodes=n0+n1+n2+n3