#!/bin/env python3 from nltk.tokenize import sent_tokenize import os import re import codecs import sys #gene=sys.argv[1] ## turn dictionary (synonyms) to regular expression def undic(dic): return "|".join(dic.values()) def findWholeWord(w): return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search def getSentences(query, gene): abstracts = os.popen("esearch -db pubmed -query " + query + " | efetch -format uid |fetch-pubmed -path /run/media/hao/PubMed/Archive/ | xtract -pattern PubmedArticle -element MedlineCitation/PMID,ArticleTitle,AbstractText").read() out=str() for row in abstracts.split("\n"): tiab=row.split("\t") pmid = tiab.pop(0) tiab= " ".join(tiab) sentences = sent_tokenize(tiab) ## keep the sentence only if it contains the gene for sent in sentences: if findWholeWord(gene)(sent): sent=re.sub(r'\b(%s)\b' % gene, r'\1', sent, flags=re.I) out+=pmid+"\t"+sent+"
\n" return(out) def gene_addiction(gene): # search gene name & drug name in the context of addiction terms (i.e., exclude etoh affects cancer, or methods to extract cocaine) q="\"(" + addiction.replace("|", " OR ") + ") AND (" + drug.replace("|", " OR ", ) + ") AND " + gene + "\"" sents=getSentences(q, gene) out=str() for sent in sents.split("\n"): for drug0 in drug_d: if findWholeWord(drug_d[drug0])(sent) : sent=re.sub(r'\b(%s)\b' % drug_d[drug0], r'\1', sent, flags=re.I) out+=gene+"\t"+"drug\t" + drug0+"\t"+sent+"\n" for add0 in addiction_d: if findWholeWord(add0)(sent) : sent=re.sub(r'\b(%s)\b' % add0, r'\1', sent, flags=re.I) out+=gene+"\t"+"addiction\t"+add0+"\t"+sent+"\n" return(out) def gene_anatomical(gene): q="\"(" + brain.replace("|", " OR ") + ") AND " + gene + "\"" sents=getSentences(q,gene) out=str() for sent in sents.split("\n"): for brain0 in brain_d: if findWholeWord(brain_d[brain0])(sent) : sent=re.sub(r'\b(%s)\b' % brain_d[brain0], r'\1', sent, flags=re.I) out+=gene+"\t"+"brain\t"+brain0+"\t"+sent+"\n" return(out) def gene_functional(gene): q="\"(" + function.replace("|", " OR ") + ") AND " + gene + "\"" sents=getSentences(q,gene) out=str() for sent in sents.split("\n"): for bio0 in function_d: if findWholeWord(function_d[bio0])(sent) : sent=re.sub(r'\b(%s)\b' % function_d[bio0], r'\1', sent, flags=re.I) out+=gene+"\t"+"function\t"+bio0+"\t"+sent+"\n" return(out) def generate_nodes(nodes_d, nodecolor): # include all search terms even if there are no edges, just to show negative result json0 =str() #"{ data: { id: '" + gene + "'} },\n" for node in nodes_d: json0 += "{ data: { id: '" + node + "', nodecolor: '" + nodecolor + "' } },\n" return(json0) def generate_edges(data): json0=str() edgeCnts={} for line in data.split("\n"): if len(line.strip())!=0: (source, cat, target, pmid, sent) = line.split("\t") edgeID=source+"|"+target if edgeID in edgeCnts: edgeCnts[edgeID]+=1 else: edgeCnts[edgeID]=1 for edgeID in edgeCnts: (source,target)=edgeID.split("|") json0+="{ data: { id: \'" + edgeID + "\', source: \'" + source + "\', target: '" + target + "\', sentCnt: '" + str(edgeCnts[edgeID]) + "' } },\n" return(json0) addiction_d = {"reward":"reward|reinforcement|conditioned place preference|CPP|self-administration|self-administered", "aversion":"aversion|aversive|CTA|withdrawal", "relapse":"relapse|reinstatement|craving|drug seeking", "sensitization":"sensitization", "addiction":"addiction|drug abuse", "intoxication":"intoxication|binge" } addiction=undic(addiction_d) drug_d = {"alcohol":"alcohol|alcoholism", "nicotine":"smoking|nicotine|tobacco", "amphetamine":"methamphetamine|amphetamine|METH", "cocaine":"cocaine", "opioid":"opioid|fentanyl|oxycodone|oxycontin|heroin|morphine", "cannabinoid":"marijuana|cannabinoid|tetrahydrocannabinol|thc|thc-9" } drug=undic(drug_d) brain_d ={"cortex":"cortex|pfc|vmpfc|il|pl|prelimbic|infralimbic", "striatum":"striatum|STR", "accumbens":"shell|core|NAcc|acbs|acbc", "hippocampus":"hippocampus|hipp|hip|ca1|ca3|dentate|gyrus", "amygadala":"amygadala|cea|bla|amy", "vta":"ventral tegmental|vta|pvta" } # brain region has too many short acronyms to just use the undic function, so search PubMed using the following brain="cortex|accumbens|striatum|amygadala|hippocampus|tegmental|mesolimbic|infralimbic|prelimbic" function_d={"plasticity":"LTP|LTD|plasticity|synaptic|epsp|epsc", "neurotransmission": "neurotransmission|glutamate|GABA|cholinergic|serotoninergic", "signalling":"signalling|phosphorylation|glycosylation", # "regulation":"increased|decreased|regulated|inhibited|stimulated", "transcription":"transcription|methylation|histone|ribosome", } function=undic(function_d) #https://htmlcolorcodes.com/ n0=generate_nodes(function_d, "#D7BDE2") n1=generate_nodes(addiction_d,"#A9CCE3") n2=generate_nodes(drug_d, "#A3E4D7") n3=generate_nodes(brain_d, "#F9E79F") default_nodes=n0+n1+n2+n3