#!/bin/env python3
from nltk.tokenize import sent_tokenize
import os
import re
from nltk.util import pr
from addiction_keywords import *
from gene_synonyms import *
import ast
from flask import session
global pubmed_path
def undic(dic):
all_s=''
for s in dic:
all_s += "|".join(str(e) for e in s)
all_s +="|"
all_s=all_s[:-1]
return all_s
def findWholeWord(w):
return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search
def getabstracts(gene,query):
if query[-1] =='s':
query2 = query+"*"
else:
query2 = query+"s*"
query3 = query2.replace("s|", "s* OR ")
query4 = query3.replace("|", "s* OR ")
#query4=query
#query="\"(" + query4 + ") AND ((" + gene + "[tiab]) or (" + gene + "[meSH]))\""
query="\"(" + query4 + ") AND (" + gene + " [tiab])\""
#query = "neurons* AND (penk [tiab])"
abstracts = os.popen("esearch -db pubmed -query " + query \
+ " | efetch -format uid |fetch-pubmed -path "+ pubmed_path \
+ " | xtract -pattern PubmedArticle -element MedlineCitation/PMID,ArticleTitle,AbstractText|sed \"s/-/ /g\"").read()
#print(abstracts)
return(abstracts)
sentences_ls=[]
def getSentences(gene, sentences_ls):
out=str()
# Keep the sentence only if it contains the gene
#print(sentences_ls)
for sent in sentences_ls:
#if gene.lower() in sent.lower():
if re.search(r'\b'+gene.lower()+r'\b',sent.lower()):
pmid = sent.split(' ')[0]
sent = sent.split(' ',1)[1]
sent=re.sub(r'\b(%s)\b' % gene, r'\1', sent, flags=re.I)
out+=pmid+"\t"+sent+"\n"
return(out)
def gene_category(gene, cat_d, cat, abstracts,addiction_flag,dictn):
# e.g. BDNF, addiction_d, undic(addiction_d) "addiction"
sents=getSentences(gene, abstracts)
#print(abstracts)
out=str()
if (addiction_flag==1):
for sent in sents.split("\n"):
for key in cat_d:
if key =='s':
key_ad = key+"*"
else:
key_ad = key+"s*"
if findWholeWord(key_ad)(sent) :
sent=sent.replace("","").replace("","") # remove other highlights
sent=re.sub(r'\b(%s)\b' % key_ad, r'\1', sent, flags=re.I) # highlight keyword
out+=gene+"\t"+ cat + "\t"+key+"\t"+sent+"\n"
else:
for key_1 in dictn[cat_d].keys():
for key_2 in dictn[cat_d][key_1]:
if key_2[-1] =='s':
key_2 = key_2+"*"
else:
key_2 = key_2+"s*"
for sent in sents.split("\n"):
if findWholeWord(key_2)(sent) :
sent=sent.replace("","").replace("","") # remove other highlights
sent=re.sub(r'\b(%s)\b' % key_2, r'\1', sent, flags=re.I) # highlight keyword
out+=gene+"\t"+ cat + "\t"+key_1+"\t"+sent+"\n"
return(out)
def generate_nodes(nodes_d, nodetype,nodecolor):
# Include all search terms even if there are no edges, just to show negative result
json0 =str()
for node in nodes_d:
json0 += "{ data: { id: '" + node + "', nodecolor: '" + nodecolor + "', nodetype: '"+nodetype + "', url:'/shownode?nodetype=" + nodetype + "&node="+node+"' } },\n"
return(json0)
def generate_nodes_json(nodes_d, nodetype,nodecolor):
# Include all search terms even if there are no edges, just to show negative result
nodes_json0 =str()
for node in nodes_d:
nodes_json0 += "{ \"id\": \"" + node + "\", \"nodecolor\": \"" + nodecolor + "\", \"nodetype\": \"" + nodetype + "\", \"url\":\"/shownode?nodetype=" + nodetype + "&node="+node+"\" },\n"
return(nodes_json0)
def generate_edges(data, filename):
pmid_list=[]
json0=str()
edgeCnts={}
for line in data.split("\n"):
if len(line.strip())!=0:
(source, cat, target, pmid, sent) = line.split("\t")
edgeID=filename+"|"+source+"|"+target
if (edgeID in edgeCnts) and (pmid+target not in pmid_list):
edgeCnts[edgeID]+=1
pmid_list.append(pmid+target)
elif (edgeID not in edgeCnts) and (pmid+target not in pmid_list):
edgeCnts[edgeID]=1
pmid_list.append(pmid+target)
for edgeID in edgeCnts:
(filename, source,target)=edgeID.split("|")
json0+="{ data: { id: '" + edgeID + "', source: '" + source + "', target: '" + target + "', sentCnt: " + str(edgeCnts[edgeID]) + ", url:'/sentences?edgeID=" + edgeID + "' } },\n"
return(json0)
def generate_edges_json(data, filename):
pmid_list=[]
edges_json0=str()
edgeCnts={}
for line in data.split("\n"):
if len(line.strip())!=0:
(source, cat, target, pmid, sent) = line.split("\t")
edgeID=filename+"|"+source+"|"+target
if (edgeID in edgeCnts) and (pmid+target not in pmid_list):
edgeCnts[edgeID]+=1
pmid_list.append(pmid+target)
elif (edgeID not in edgeCnts) and (pmid+target not in pmid_list):
edgeCnts[edgeID]=1
pmid_list.append(pmid+target)
for edgeID in edgeCnts:
(filename, source,target)=edgeID.split("|")
edges_json0+="{ \"id\": \"" + edgeID + "\", \"source\": \"" + source + "\", \"target\": \"" + target + "\", \"sentCnt\": \"" + str(edgeCnts[edgeID]) + "\", \"url\":\"/sentences?edgeID=" + edgeID + "\" },\n"
return(edges_json0)
def searchArchived(sets, query, filetype,sents, path_user):
if sets=='topGene':
dataFile="topGene_addiction_sentences.tab"
nodes= "{ data: { id: '" + query + "', nodecolor: '" + "#2471A3" + "', fontweight:700, url:'/progress?query="+query+"' } },\n"
elif sets=='GWAS':
dataFile="gwas_addiction.tab"
nodes=str()
pmid_list=[]
catCnt={}
sn_file = ''
for sn in sents:
(symb, cat0, cat1, pmid, sent)=sn.split("\t")
if (symb.upper() == query.upper()) :
if (cat1 in catCnt.keys()) and (pmid+cat1 not in pmid_list):
pmid_list.append(pmid+cat1)
catCnt[cat1]+=1
elif (cat1 not in catCnt.keys()):
catCnt[cat1]=1
pmid_list.append(pmid+cat1)
sn_file += sn + '\n'
nodes= "{ data: { id: '" + query + "', nodecolor: '" + "#2471A3" + "', fontweight:700, url:'/progress?query="+query+"' } },\n"
edges=str()
gwas_json=str()
nodecolor={}
nodecolor["GWAS"]="hsl(0, 0%, 70%)"
for key in catCnt.keys():
if sets=='GWAS':
nc=nodecolor["GWAS"]
nodes += "{ data: { id: '" + key + "', nodecolor: '" + nc + "', url:'https://www.ebi.ac.uk/gwas/search?query="+key.replace("_GWAS","")+"' } },\n"
edgeID=path_user+'gwas_results.tab'+"|"+query+"|"+key
edges+="{ data: { id: '" + edgeID+ "', source: '" + query + "', target: '" + key + "', sentCnt: " + str(catCnt[key]) + ", url:'/sentences?edgeID=" + edgeID + "' } },\n"
gwas_json+="{ \"id\": \"" + edgeID + "\", \"source\": \"" + query + "\", \"target\": \"" + key + "\", \"sentCnt\": \"" + str(catCnt[key]) + "\", \"url\":\"/sentences?edgeID=" + edgeID + "\" },\n"
return(nodes+edges,gwas_json,sn_file)
pubmed_path=os.environ["EDIRECT_PUBMED_MASTER"]