From a637889f13c2151303998e411dc81f3196a974f6 Mon Sep 17 00:00:00 2001 From: hakangunturkun Date: Mon, 7 Sep 2020 22:35:17 -0500 Subject: last version --- nlp/RatsPub_CNN.py | 167 +++++++++++++++++++++++++++++++++++++++++ nlp/RatsPub_CNN_predict.py | 181 +++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 348 insertions(+) create mode 100644 nlp/RatsPub_CNN.py create mode 100644 nlp/RatsPub_CNN_predict.py (limited to 'nlp') diff --git a/nlp/RatsPub_CNN.py b/nlp/RatsPub_CNN.py new file mode 100644 index 0000000..432d749 --- /dev/null +++ b/nlp/RatsPub_CNN.py @@ -0,0 +1,167 @@ +import string +import re +import os +from os import listdir +import matplotlib.pyplot as plt +from nltk.corpus import stopwords +from nltk.stem.porter import PorterStemmer +from collections import Counter +import numpy as np +from numpy import array +import tensorflow as tf +import keras +from tensorflow.keras.preprocessing.text import Tokenizer +from tensorflow.keras.preprocessing.sequence import pad_sequences +from tensorflow.keras.utils import plot_model +from tensorflow.keras.models import Sequential, Dense, Flatten, Dropout, Embedding, Conv1D, MaxPooling1D +from tensorflow.keras.preprocessing.text import text_to_word_sequence +from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint +from tensorflow.keras import metrics, optimizers +import pickle + +def load_doc(filename): + file = open(filename, 'r') + text = file.read() + file.close() + return text + +def clean_doc(doc, vocab): + #tokens = text_to_word_sequence(doc, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',lower=True, split=' ') + doc = doc.lower() + # split into tokens by white space + tokens = doc.split() + # remove punctuation from each word + re_punc = re.compile('[%s]' % re.escape(string.punctuation)) + tokens = [re_punc.sub('' , w) for w in tokens] + # filter out short tokens + tokens = [word for word in tokens if len(word) > 1] + # filter out stop words + stop_words = set(stopwords.words('english')) + tokens = [w for w in tokens if not w in stop_words] + # stemming of words + porter = PorterStemmer() + stemmed = [porter.stem(word) for word in tokens] + #print(stemmed[:100]) + return tokens + +# load all docs in a directory +def train_valid(directory, vocab, is_train): + documents = list() + for filename in listdir(directory): + if is_train and (filename.endswith('1.txt') or filename.endswith('2.txt')): + continue + if not is_train and not (filename.endswith('1.txt') or filename.endswith('2.txt')): + continue + path = directory + '/' + filename + doc = load_doc(path) + tokens_train_valid = clean_doc(doc, vocab) + tokens_train_valid = [w for w in tokens_train_valid if w in vocab] + tokens_train_valid = ' '.join(tokens_train_valid) + documents.append(tokens_train_valid) + return documents + +def add_doc_to_vocab(filename, vocab): + doc = load_doc(filename) + tokens = clean_doc(doc, vocab) + vocab.update(tokens) + +def form_vocabulary(directory, vocab): + for filename in listdir(directory): + if not filename.endswith(".txt"): + next + path = directory + '/' + filename + add_doc_to_vocab(path, vocab) + +def load_dataset(vocab, is_train): + neg = train_valid('sentences/no_10000', vocab, is_train) + pos = train_valid('sentences/yes_10000', vocab, is_train) + docs = neg + pos + labels = array([0 for _ in range(len(neg))] + [1 for _ in range(len(pos))]) + return docs, labels + +def tokenize_data(train_docs, valid_docs, maxlen): + # create the tokenizer + tokenizer = Tokenizer() + # fit the tokenizer on the documents + tokenizer.fit_on_texts(vocab) + # encode training data set + Xtrain = tokenizer.texts_to_sequences(train_docs) + Xtrain = pad_sequences(Xtrain, maxlen=max_length, padding='post') + # encode training data set + Xvalid = tokenizer.texts_to_sequences(valid_docs) + Xvalid = pad_sequences(Xvalid, maxlen=max_length, padding='post') + return Xtrain, Xvalid, tokenizer + +def save_list(lines, filename): + data = '\n'.join(lines) + file = open(filename, 'w') + file.write(data) + file.close() + +vocab = Counter() +# add all docs to vocab +form_vocabulary('sentences/no_10000', vocab) +form_vocabulary('sentences/yes_10000', vocab) +save_list(vocab, 'vocab.txt') + +# load the vocabulary +vocab_filename = 'vocab.txt' +vocab = load_doc(vocab_filename) +vocab = set(vocab.split()) +save_list(vocab, 'vocab_last.txt') +# load training and validation data +train_docs, ytrain = load_dataset(vocab, True) +valid_docs, yvalid = load_dataset(vocab, False) +max_length = max([len(s.split()) for s in train_docs]) +print("Maximum length:", max_length) +Xtrain, Xvalid, tokenizer = tokenize_data(train_docs, valid_docs, max_length) + +# saving +with open('tokenizer.pickle', 'wb') as handle: + pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL) + +print(len(vocab)) + +def create_model(vocab_size, max_length): + model = Sequential() + model.add(Embedding(vocab_size, 32, input_length=max_length)) + model.add(Conv1D(filters=16, kernel_size=4, activation='relu')) + model.add(MaxPooling1D(pool_size=2)) + model.add(Flatten()) + model.add(Dense(10, activation='relu')) + model.add(Dense(1, activation='sigmoid')) + opt = tf.keras.optimizers.Adamax(learning_rate=0.002, beta_1=0.9, beta_2=0.999) + model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[tf.keras.metrics.AUC()]) +# model.summary() + return model + +model = create_model(len(vocab)+1, max_length) + +checkpoint_path = "training/cp-{epoch:04d}.ckpt" +checkpoint_dir = os.path.dirname(checkpoint_path) + +# Create a callback that saves the model's weights +cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_weights_only=True, verbose=1) + +# Train the model with the new callback +model_fit=model.fit(Xtrain, ytrain, epochs=20,batch_size=64, validation_data=(Xvalid,yvalid),callbacks=[cp_callback]) + +# Plot training & validation accuracy values +plt.plot(model_fit.history['auc']) +plt.plot(model_fit.history['val_auc']) +plt.title('Model accuracy') +plt.ylabel('Accuracy') +plt.xlabel('Epoch') +plt.legend(['Train', 'Validation'], loc='lower right') +plt.savefig('model_accuracy.png') +plt.show() + +# Plot training & validation loss values +plt.plot(model_fit.history['loss']) +plt.plot(model_fit.history['val_loss']) +plt.title('Model loss') +plt.ylabel('Loss') +plt.xlabel('Epoch') +plt.legend(['Train', 'Validation'], loc='upper right') +plt.savefig('model_loss.png') +plt.show() diff --git a/nlp/RatsPub_CNN_predict.py b/nlp/RatsPub_CNN_predict.py new file mode 100644 index 0000000..9b6a206 --- /dev/null +++ b/nlp/RatsPub_CNN_predict.py @@ -0,0 +1,181 @@ +import string +import re +import os +from os import listdir +import matplotlib.pyplot as plt +from nltk.corpus import stopwords +from nltk.stem.porter import PorterStemmer +from collections import Counter +import numpy as np +from numpy import array +import sklearn +from sklearn import metrics +from sklearn.metrics import confusion_matrix +import tensorflow as tf +import keras +from tensorflow.keras.preprocessing.text import Tokenizer +from tensorflow.keras.preprocessing.sequence import pad_sequences +from tensorflow.keras.utils import plot_model +from tensorflow.keras.models import Sequential +from tensorflow.keras.layers import Dense, Flatten, Dropout, Embedding, Conv1D, MaxPooling1D +from tensorflow.keras.preprocessing.text import text_to_word_sequence +from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint +from tensorflow.keras import metrics, optimizers +import pickle + +def clean_doc(doc, vocab): + doc = doc.lower() + # split into tokens by white space + tokens = doc.split() + # remove punctuation from each word + re_punc = re.compile('[%s]' % re.escape(string.punctuation)) + tokens = [re_punc.sub('' , w) for w in tokens] + # filter out short tokens + tokens = [word for word in tokens if len(word) > 1] + # filter out stop words + stop_words = set(stopwords.words('english')) + tokens = [w for w in tokens if not w in stop_words] + # stemming of words + porter = PorterStemmer() + stemmed = [porter.stem(word) for word in tokens] + #print(stemmed[:100]) + return tokens + +# loading +with open('./nlp/tokenizer.pickle', 'rb') as handle: + tokenizer = pickle.load(handle) +with open('./nlp/vocabulary.txt', 'r') as vocab: + vocab = vocab.read() + +print(len(vocab.split())) + +def create_model(vocab_size, max_length): + model = Sequential() + model.add(Embedding(vocab_size, 32, input_length=max_length)) + model.add(Conv1D(filters=16, kernel_size=4, activation='relu')) + model.add(MaxPooling1D(pool_size=2)) + model.add(Flatten()) + model.add(Dense(10, activation='relu')) + model.add(Dense(1, activation='sigmoid')) + opt = tf.keras.optimizers.Adamax(learning_rate=0.002, beta_1=0.9, beta_2=0.999) + model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[tf.keras.metrics.AUC()]) + #plot_model(model, to_file='model.png', show_shapes=True) + return model + +model = create_model(23154, 64) +model.summary() + +checkpoint_path = "./nlp/weights.ckpt" +model.load_weights(checkpoint_path) + + +err=0 +pr=0 +total=0 +max_length=64 +pos_list = [] +neg_list = [] +for k in range(30000,35000): + file_name = "./sentences/yes_all/yes_"+str(k)+".txt" + try: + file = open(file_name,"r") + sent = file.readline() + tokens = clean_doc(sent,vocab) + tokens = [w for w in tokens if w in vocab] + line = ' '.join(tokens) + line = [line] + Xtrain_ex = tokenizer.texts_to_sequences(line) + Xtrain_ex = pad_sequences(Xtrain_ex, maxlen=max_length, padding='post') + yhat_pos = model.predict(Xtrain_ex, verbose=0) + percent_pos = yhat_pos[0,0] + pos_list.append(yhat_pos[0,0]) + total = total+1 + if round(percent_pos) == 0: + err = err +1 + if (percent_pos < 0.9 and percent_pos > 0.1): + pr = pr+1 + except FileNotFoundError: + pass + file.close() + +for t in range(30000,35000): + file_name = "./sentences/no_all/no_"+str(t)+".txt" + try: + file = open(file_name,"r") + sent = file.readline() + tokens = clean_doc(sent,vocab) + tokens = [w for w in tokens if w in vocab] + line = ' '.join(tokens) + line = [line] + Xtrain_ex = tokenizer.texts_to_sequences(line) + Xtrain_ex = pad_sequences(Xtrain_ex, maxlen=max_length, padding='post') + yhat_neg = model.predict(Xtrain_ex, verbose=0) + percent_pos = yhat_neg[0,0] + neg_list.append(yhat_neg[0,0]) + total = total+1 + if round(percent_pos) == 1: + err = err +1 + if (percent_pos < 0.9 and percent_pos > 0.1): + pr = pr+1 + except FileNotFoundError: + pass + file.close() + +err_pos = 0 +for i in range(len(pos_list)): + #print(round(pos_list[i])) + if (pos_list[i] < 0.5): + err_pos += 1 +print("Error for system stress class", err_pos) + +err_neg = 0 +for i in range(len(neg_list)): + #print((neg_list[i])) + if (round(neg_list[i]) > 0.5): + err_neg += 1 +print("Error for cellular stress class",err_neg) +print((err_pos + err_neg)/10000) + +pos_list_int = [] +for i in range(5000): + if(pos_list[i]<0.5): + pos_list_int.append(0) + else: + pos_list_int.append(1) + +neg_list_int = [] +for i in range(5000): + if(neg_list[i]>0.5): + neg_list_int.append(0) + else: + neg_list_int.append(1) + +listofzeros = [0] * 5000 +listofones= [] +for i in range(5000): + listofones.append(1) +y_true = listofones + listofzeros +y_pred_int = pos_list_int + neg_list_int +confusion_matrix(y_true, y_pred_int) + +pos_list_np = np.array(pos_list) +neg_list_np = np.array(neg_list) + +y_pred_np = np.array(pos_list+neg_list) +y_true_np = np.array(y_true) + + +fpr, tpr, thresholds = metrics.roc_curve(y_true_np, y_pred_np, pos_label=0) +print(metrics.auc(fpr, tpr)) +print(sklearn.metrics.roc_auc_score(y_true_np, y_pred_np)) + +plt.gcf().subplots_adjust(bottom=0.15) +data1 = pos_list_np +data2 = neg_list_np +bins = np.arange(0, 1+1e-8, 0.1) +plt.hist(data1, bins=bins, alpha=0.5, color = 'red') +plt.hist(data2, bins=bins, alpha=0.5, color = 'blue') +plt.xlabel("predicted probabilities \n blue: CS red:SS") +plt.ylabel('number of sentences') +plt.savefig('stress_pred.png', dpi=300) +plt.show() -- cgit v1.2.3