|
- ---
- title: "Read data"
- author: "Pjotr"
- date: "25/02/2020"
- output: html_document
- ---
-
- Set the data directory. Note you have to use one on
- your own system! When it is set correctly 'Run->all' in the
- menu will recompute everything.
-
- ```{r setup, include=FALSE}
- data <- "/home/wrk/iwrk/closed/kemri/Francis_Final_TregData_Jan2020/Data/"
- setwd(data)
- knitr::opts_knit$set(echo = TRUE, root.dir=data)
- ```
-
- ```{r}
- getwd()
- ```
-
- ## Read individuals and attributes
-
- load a table
-
- ```{r ind_attr}
- ind_attr=read.csv("Individual_attributes.csv")
- ind_attr[1:3,1:3]
- ```
-
- Show data structure
-
- ```{r}
- summary(ind_attr)
- ```
-
- ```{r}
- colnames(ind_attr)
- ```
-
- Three elements of phenotype column
-
- ```{r}
- ind_attr[["Phenotype"]][0:3]
- ```
-
- or
-
- ```{r}
- ind_attr$Phenotype[0:3]
- ```
-
- Let's do a simple plot. Plot ELISA values against inds:
-
- ```{r}
- plot(ind_attr$ELISA)
- ```
-
- Let's plot ELISA vs Time to diagnosis
-
- ```{r}
- plot(ind_attr$ELISA ~ ind_attr$Time_to_diagnosis)
- ```
-
- So, it looks like late diagnosis has an effect. This is just a quick example, let's continue loading sets from
-
- ```
- cytokines.csv
- final_outcome_jan2020.csv
- Individual_attributes.csv
- pcr.csv
- supernatant.csv
- transcriptomics.csv
- treg_phenotype_data.csv
- ```
-
- ```{r}
- cytokines = read.csv("cytokines.csv")
- final = read.csv("final_outcome_jan2020.csv")
- pcr = read.csv("pcr.csv")
- supernatant = read.csv("supernatant.csv")
- transcriptomics = read.csv("transcriptomics.csv")
- treg = read.csv("treg_phenotype_data.csv")
- ```
-
- when they load you can explore the data in the top right enviroment or
-
- ```{r}
- show(pcr$day[1:3])
- ```
-
- It will show that not all rows are labeled. That means we will need a way to cross-reference by ID.
|